
EUROPEAN COMMITTEE FOR STANDARDIZATION
C OM ITÉ EUR OP ÉEN DE NOR M ALIS AT ION
EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

© 2003 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No. CWA 14050-15:2003 D/E/F

CEN

WORKSHOP

AGREEMENT

CWA 14050-15

October 2003

ICS 35.200; 35.240.40 Supersedes CWA 14050-15:2000

English version

Extensions for Financial Services (XFS) interface specification -
Release 3.0 - Part 15: Cash In Module Device Class Interface -

Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of
which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National
Members of CEN but neither the National Members of CEN nor the CEN Management Centre can be held accountable for the technical
content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece,
Hungary, Iceland, Ireland, Italy, Luxembourg, Malta, Netherlands, Norway, Portugal, Slovakia, Spain, Sweden, Switzerland and United
Kingdom.

CWA 14050-15:2003 (E)

2

 Table of Contents

Foreword... .. 4

1. Introduction.. .. 6

1.1 Background to Release 3.02.. 6

1.2 XFS Service-Specific Programming 6

2. Cash-In Module 8

3. References.. .. 9

4. Info Commands... 10

4.1 WFS_INF_CIM_STATUS.. 10

4.2 WFS_INF_CIM_CAPABILITIES 13

4.3 WFS_INF_CIM_CASH_UNIT_INFO... 15

4.4 WFS_INF_CIM_TELLER_INFO 19

4.5 WFS_INF_CIM_CURRENCY_EXP... 21

4.6 WFS_INF_CIM_BANKNOTE_TYPES.. 22

4.7 WFS_INF_CIM_CASH_IN_STATUS 23

4.8 WFS_INF_CIM_GET_P6_INFO.. 23

4.9 WFS_INF_CIM_GET_P6_SIGNATURE ... 24

5. Execute Commands 26

5.1 WFS_CMD_CIM_CASH_IN_START 26

5.2 WFS_CMD_CIM_CASH_IN .. 27

5.3 WFS_CMD_CIM_CASH_IN_END .. 28

5.4 WFS_CMD_CIM_CASH_IN_ROLLBACK.. .. 29

5.5 WFS_CMD_CIM_RETRACT .. 30

5.6 WFS_CMD_CIM_OPEN_SHUTTER .. 31

5.7 WFS_CMD_CIM_CLOSE_SHUTTER .. 32

5.8 WFS_CMD_CIM_SET_TELLER_INFO... 32

5.9 WFS_CMD_CIM_SET_CASH_UNIT_INFO ... 33

5.10 WFS_CMD_CIM_START_EXCHANGE 34

5.11 WFS_CMD_CIM_END_EXCHANGE.. 36

5.12 WFS_CMD_CIM_OPEN_SAFE_DOOR ... 37

5.13 WFS_CMD_CIM_RESET.. 37

5.14 WFS_CMD_CIM_CONFIGURE_CASH_IN_UNITS ... 38

5.15 WFS_CMD_CIM_CONFIGURE_NOTETYPES .. 39

5.16 WFS_CMD_CIM_CREATE_P6_SIGNATURE ... 40

6. Events 42

6.1 WFS_SRVE_CIM_SAFEDOOROPEN.. 42

6.2 WFS_SRVE_CIM_SAFEDOORCLOSED... .. 42

CWA 14050-15:2003 (E)

3

6.3 WFS_USRE_CIM_CASHUNITTHRESHOLD... 42

6.4 WFS_SRVE_CIM_CASHUNITINFOCHANGED... 42

6.5 WFS_SRVE_CIM_TELLERINFOCHANGED ... 4 2

6.6 WFS_EXEE_CIM_CASHUNITERROR... 43

6.7 WFS_SRVE_CIM_ITEMSTAKEN... 43

6.8 WFS_SRVE_CIM_COUNTS_CHANGED... 43

6.9 WFS_EXEE_CIM_INPUTREFUSE... 44

6.10 WFS_SRVE_CIM_ITEMSPRESENTED ... 44

6.11 WFS_SRVE_CIM_ITEMSINSERTED... 44

6.12 WFS_EXEE_CIM_NOTEERROR ... 44

6.13 WFS_EXEE_CIM_SUBCASHIN 45

6.14 WFS_SRVE_CIM_MEDIADETECTED ... 45

6.15 WFS_EXEE_CIM_INPUT_P6: .. 45

7 ATM Cash In Transaction Flow – Application Guidelines 46

7.1 OK Transaction.. 46

7.2 Cancellation by Customer 46

7.3 Stacker becomes full.. 47

7.4 Bill recognition error 48

7.5 Implicit Control Of the Shutter by the Service Provider – OK Transaction ... 49

7.6 Implicit Control Of the Shutter by the Service Provider – RollBack... 50

7.7 Implicit Control Of the Shutter– WFS_EXEE_CIM_SUBCASHIN event .. 51

7.8 OK Transaction P6 52

8. Rules for Cash Unit Exchange 53

9. C - Header file.. 54

CWA 14050-15:2003 (E)

4

Foreword

This CWA is revision 3.02 of the XFS interface specification.

The CEN/ISSS XFS Workshop gathers suppliers as well as banks and other financial service companies. A list of
companies participating in this Workshop and in support of this CWA is available from the CEN/ISSS Secretariat.

This document supersedes CWA 14050-15:2000.

This CWA was formally approved by the XFS Workshop meeting on 2003-05-21. The specification is continuously
reviewed and commented in the CEN/ISSS Workshop on XFS. It is therefore expected that an update of the
specification will be published in due time as a CWA, superseding this revision 3.02.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI); Programmer's Reference

Part 2: Service Classes Definition; Programmer's Reference

Part 3: Printer Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Class Interface - Programmer's Reference

Part 15: Cash In Module Device Class Interface- Programmer's Reference

Part 16: Application Programming Interface (API) - Service Provider Interface (SPI) - Migration from Version 2.00
(see CWA 13449) to Version 3.00 (this CWA) - Programmer's Reference

Part 17: Printer Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00 (this CWA) -
Programmer's Reference

Part 18: Identification Card Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00
(see CWA 14050-4:2000; superseded) - Programmer's Reference

Part 19: Cash Dispenser Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00 (this
CWA) - Programmer's Reference

Part 20: PIN Keypad Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00 (see
CWA 14050-6:2000; superseded) - Programmer's Reference

Part 21: Depository Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00 (this
CWA) - Programmer's Reference

Part 22: Text Terminal Unit Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00
(this CWA) - Programmer's Reference

Part 23: Sensors and Indicators Unit Device Class Interface - Migration from Version 2.00 (see CWA 13449) to
Version 3.01 (this CWA) - Programmer's Reference

Part 24: Camera Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00 (this CWA) -
Programmer's Reference

CWA 14050-15:2003 (E)

5

Part 25: Identification Card Device Class Interface - PC/SC Integration Guidelines

Part 26: Identification Card Device Class Interface - Migration from Version 3.00 (see CWA 14050-4:2000;
superseded) to Version 3.02 (this CWA) - Programmer's Reference

Part 27: PIN Keypad Device Class Interface - Migration from Version 3.00 (see CWA 14050-6:2000; superseded) to
Version 3.02 (this CWA) - Programmer's Reference

Part 28: Cash In Module Device Class Interface - Migration from Version 3.00 (see CWA 14050-15:2000; superseded)
to Version 3.02 (this CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a complementary
document, called Release Notes. The Release Notes contain clarifications and explanations on the CWA specifications,
which are not requiring functional changes. The current version of the Release Notes is available online from
http://www.cenorm.be/isss/Workshop/XFS.

The information in this document represents the Workshop's current views on the issues discussed as of the date of
publication. It is furnished for informational purposes only and is subject to change without notice. CEN/ISSS makes
no warranty, express or implied, with respect to this document.

Revision History:

3.00 18 October 2000 First edition
3.02 21 May 2003 Update release encompassing the Article 6 Paragraph 36

European legislation to deal with handling of forgery and
suspected forgery notes.

For a detailed description see CWA 14050-28: 2003
CIM migration from version 3.00 to version 3.02

CWA 14050-15:2003 (E)

6

1. Introduction

1.1 Background to Release 3.02

The CEN XFS Workshop is a continuation of the Banking Solution Vendors Council workshop and maintains a
technical commitment to the Win 32 API. However, the XFS Workshop has extended the franchise of multi vendor
software by encouraging the participation of both banks and vendors to take part in the deliberations of the creation of
an industry standard. This move towards opening the participation beyond the BSVC's original membership has been
very successful with a current membership level of more than 20 companies.

The fundamental aims of the XFS Workshop are to promote a clear and unambiguous specification for both service
providers and application developers. This has been achieved to date by sub groups working electronically and
quarterly meetings.

The move from an XFS 3.00 specification to a 3.02 specification has been prompted by customer demand for support of
ECB Article 6 legislation to deal with handling of forgery and suspected forgery notes. To do cash recycling in Europe
there are requirements defined in article 6 how to deal with money that is a forgery or might be a forgery.
The bank notes are classified in levels. The following levels are defined at the moment:

- level1: no bank note
- level2: forgery
- level3: possibly a forgery
- level4: real money

A signature is a unique identifier for a bank note. It is used together with the transaction data like an account number to
identify the customer who has deposited this banknote

The clear direction of the XFS Workshop, therefore, is the delivery of a new Release 3.02 specification based on a C
API. It will be delivered with the promise of the protection of technical investment for existing applications and the
design to safeguard future developments. All XFS 3.00 CIM clarifications apply to this document.

1.2 XFS Service-Specific Programming

.
The service classes are defined by their service-specific commands and the associated data structures, error codes,
messages, etc. These commands are used to request functions that are specific to one or more classes of service
providers, but not all of them, and therefore are not included in the common API for basic or administration functions.

When a service-specific command is common among two or more classes of service providers, the syntax of the
command is as similar as possible across all services, since a major objective of the Extensions for Financial Services is
to standardize function codes and structures for the broadest variety of services. For example, using the WFSExecute
function, the commands to read data from various services are as similar as possible to each other in their syntax and
data structures.

In general, the specific command set for a service class is defined as a superset of the specific capabilities likely to be
provided by the developers of the services of that class; thus any particular device will normally support only a subset of
the defined command set.
There are three cases in which a service provider may receive a service-specific command that it does not support:

• The requested capability is defined for the class of service providers by the XFS specification, the particular vendor
implementation of that service does not support it, and the unsupported capability is not considered to be
fundamental to the service. In this case, the service provider returns a successful completion, but does no operation.
An example would be a request from an application to turn on a control indicator on a passbook printer; the service
provider recognizes the command, but since the passbook printer it is managing does not include that indicator, the
service provider does no operation and returns a successful completion to the application.

• The requested capability is defined for the class of service providers by the XFS specification, the particular vendor

CWA 14050-15:2003 (E)

7

implementation of that service does not support it, and the unsupported capability is considered to be fundamental
to the service. In this case, a WFS_ERR_UNSUPP_COMMAND error is returned to the calling application. An
example would be a request from an application to a cash dispenser to dispense coins; the service provider
recognizes the command but, since the cash dispenser it is managing dispenses only notes, returns this error.

• The requested capability is not defined for the class of service providers by the XFS specification. In this case, a
WFS_ERR_INVALID_COMMAND error is returned to the calling application.

This design allows implementation of applications that can be used with a range of services that provide differing
subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and
WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify their
behaviour accordingly, or they may use functions and then deal with WFS_ERR_UNSUPP_COMMAND error returns
to make decisions as to how to use the service.

CWA 14050-15:2003 (E)

8

2. Cash-In Module

This specification describes the functionality of a XFS compliant Cash In Module (CIM) service provider. It defines the
service-specific commands that can be issued to the service provider using the WFSGetInfo, WFSAsyncGetInfo,
WFSExecute and WFSAsyncExecute functions.

Persistent values are maintained through power failures, open sessions, close session and system resets.

This specification covers the acceptance of items. An “item” is defined as any media that can be accepted and includes
coupons, documents, bills and coins. However, if coins and bills are both to be accepted separate service providers must
be implemented for each.

All currency parameters in this specification are expressed as a quantity of minimum dispense units, as defined in the
description of the WFS_INF_CIM_CURRENCY_EXP command (see Section 4.5).

There are two types of CIM: Self-Service CIM and Teller CIM. A Self-Service CIM operates in an automated
environment, while a Teller CIM has an operator present. The functionality provided by the following commands is
only applicable to a Teller CIM:

WFS_CMD_CIM_SET_TELLER_INFO
WFS_INF_CIM_SET_TELLER_INFO

It is possible for the CIM to be part of a compound device with the Cash Dispenser Module (CDM). This CIM\CDM
combination is referred to throughout this specification as a “Cash Recycler”. For details of the CDM interface see Ref.
3.

If the device is a Cash Recycler then, if cash unit exchanges are required on both interfaces, the exchanges cannot be
performed concurrently. An exchange on one interface must be complete (the WFS_CMD_CIM_END_EXCHANGE
must have completed) before an exchange can start on the other interface. The WFS_ERR_CIM_EXCHANGEACTIVE
error code will be returned if the correct sequence is not adhered to. If the device has recycle units of multiple
currencies and/or denominations, then the CIM interface should be used for exchange operations involving these cash
units.

The Cash-Out cash unit counts will be available through the CDM interface and the Cash-In cash unit counts will be
available through the CIM interface. Counts for recycle cash units are available through both interfaces. The event
WFS_SRVE_CIM_COUNTS_CHANGED will be posted if an operation on the CDM interface effects the recycle cash
unit counts which are available through the CIM interface.

The following commands on the CDM interface may affect the CIM counts :
WFS_CMD_CDM_DISPENSE
WFS_CMD_CDM_PRESENT
WFS_CMD_CDM_RETRACT
WFS_CMD_CDM_COUNT
WFS_CMD_CDM_REJECT
WFS_CMD_CDM_SET_CASH_UNIT_INFO
WFS_CMD_CDM_END_EXCHANGE
WFS_CMD_CDM_RESET
WFS_CMD_CDM_TEST_CASH_UNITS

CWA 14050-15:2003 (E)

9

3. References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference
Revision 3.00, October 18, 2000
2. ISO 4217 at http://www.iso.ch
3. XFS Cash Dispenser Device Class Interface, Programmer’s Reference, Revision 3.00, October 18, 2000
4. Paragraph 6 of the EU council regulation 1338/2001

Terms of reference for the adaptation of paragraph 6 on cash in and cash recycling machines
(18.04.2002)

CWA 14050-15:2003 (E)

10

4. Info Commands

4.1 WFS_INF_CIM_STATUS

Description This command is used to obtain the status of the CIM. It may also return vendor-specific status
information.

Input Param None.

Output Param LPWFSCIMSTATUS lpStatus;

typedef struct _wfs_cim_status
{
WORD fwDevice;
WORD fwSafeDoor;
WORD fwAcceptor;
WORD fwIntermediateStacker;
WORD fwStackerItems;
WORD fwBanknoteReader;
BOOL bDropBox;
LPWFSCIMINPOS * lppPositions;
LPSTR lpszExtra;
} WFSCIMSTATUS, * LPWFSCIMSTATUS;

fwDevice
Supplies the state of the CIM. However, a fwDevice status of WFS_CIM_DEVONLINE does not
necessarily imply that accepting can take place: the value of the fwAcceptor field must be taken into
account and - for some vendors - the state of the safe door (fwSafeDoor) may also be relevant. The
state of the CIM will have one of the following values:
Value Meaning
WFS_CIM_DEVONLINE The device is online. This is returned when the acceptor is

present and operational.
WFS_CIM_DEVOFFLINE The device is offline (e.g. the operator has taken the device

offline by turning a switch or pulling out the device).
WFS_CIM_DEVPOWEROFF The device is powered off or physically not connected.
WFS_CIM_DEVNODEVICE The device is not intended to be there, e.g. this type of self

service machine does not contain such a device or it is
internally not configured.

WFS_CIM_DEVHWERROR The device is inoperable due to a hardware error.
WFS_CIM_DEVUSERERROR The device is present but a person is preventing proper

device operation.
WFS_CIM_DEVBUSY The device is busy and unable to process an execute

command at this time.

fwSafeDoor
Supplies the state of the safe door as one of the following values:
Value Meaning
WFS_CIM_DOORNOTSUPPORTED Physical device has no safe door or door state

reporting is not supported.
WFS_CIM_DOOROPEN Safe door is open.
WFS_CIM_DOORCLOSED Safe door is closed.
WFS_CIM_DOORUNKNOWN Due to a hardware error or other condition, the state of

the door cannot be determined.

fwAcceptor
Supplies the state of the acceptor cash units as one of the following values:
Value Meaning
WFS_CIM_ACCOK All cash units present are in a good state.
WFS_CIM_ACCCUSTATE One of the cash units present is in an abnormal state. The

acceptor is operational, but one or more of the cash units is
in a high, full or inoperative condition. Items can still be
accepted into at least one of the cash units.

CWA 14050-15:2003 (E)

11

WFS_CIM_ACCCUSTOP Due to a cash unit failure accepting is impossible. The
acceptor is operational, but no items can be accepted
because all of the cash units are in a full or inoperative
condition.
This state also occurs when a retract cash unit is full or no
retract cash unit is present, or an application lock is set on
every cash unit.

WFS_CIM_ACCCUUNKNOWN Due to a hardware error or other condition, the state of the
cash units cannot be determined.

fwIntermediateStacker
Supplies the state of the intermediate stacker as one of the following values:
Value Meaning
WFS_CIM_ISEMPTY The intermediate stacker is empty.
WFS_CIM_ISNOTEMPTY The intermediate stacker is not empty.
WFS_CIM_ISFULL The intermediate stacker is full.
WFS_CIM_ISUNKNOWN Due to a hardware error or other condition, the state of the

intermediate stacker cannot be determined.
WFS_CIM_ISNOTSUPPORTED The physical device has no intermediate stacker.

fwStackerItems
This field inform the application whether items on the intermediate stacker have been in customer
access. Possible values are:
Value Meaning
WFS_CIM_CUSTOMERACCESS Items on the intermediate stacker have been in customer

access. If the device is a recycler then the items on the
intermediate stacker may be there as a result of a previous
cash out operation.

WFS_CIM_NOCUSTOMERACCESS Items on the intermediate stacker have not been in
customer access.

WFS_CIM_ACCESSUNKNOWN It is not known if the items on the intermediate stacker
have been in customer access.

WFS_CIM_NOITEMS There are no items on the intermediate stacker or the
physical device has no intermediate stacker.

fwBanknoteReader
Supplies the state of the banknote reader as one of the following values:
Value Meaning
WFS_CIM_BNROK The banknote reader is in a good state.
WFS_CIM_BNRINOP The banknote reader is inoperable.
WFS_CIM_BNRUNKNOWN Due to a hardware error or other condition, the state of the

banknote reader cannot be determined.
WFS_CIM_BNRNOTSUPPORTED The physical device has no banknote reader.

bDropBox
The drop box is an area with in the CIM where items which have caused a problem during an
operation are stored. This field specifies the status of the drop box. TRUE means that some items
are stored in the drop box due to a Cash-In transaction which caused a problem. FALSE indicates
that the drop box is empty.

lppPositions
Pointer to a NULL terminated array of pointers to WFSCIMINPOS structures (one for each
supported input or output position):

typedef struct _wfs_cim_inpos
{
WORD fwPosition;
WORD fwShutter;
WORD fwPositionStatus;
WORD fwTransport;
WORD fwTransportStatus;
} WFSCIMINPOS, * LPWFSCIMINPOS;

CWA 14050-15:2003 (E)

12

fwPosition
Specifies the input or output position as one of the following values:
Value Meaning
WFS_CIM_POSINLEFT Left input position.
WFS_CIM_POSINRIGHT Right input position.
WFS_CIM_POSINCENTER Center input position.
WFS_CIM_POSINTOP Top input position.
WFS_CIM_POSINBOTTOM Bottom input position.
WFS_CIM_POSINFRONT Front input position.
WFS_CIM_POSINREAR Rear input position.
WFS_CIM_POSOUTLEFT Left output position.
WFS_CIM_POSOUTRIGHT Right output position.
WFS_CIM_POSOUTCENTER Center output position.
WFS_CIM_POSOUTTOP Top output position.
WFS_CIM_POSOUTBOTTOM Bottom output position.
WFS_CIM_POSOUTFRONT Front output position.
WFS_CIM_POSOUTREAR Rear output position.

fwShutter
Specifies the state of the shutter as one of the following values:
Value Meaning
WFS_CIM_SHTCLOSED The shutter is closed.
WFS_CIM_SHTOPEN The shutter is opened.
WFS_CIM_SHTJAMMED The shutter is jammed.
WFS_CIM_SHTUNKNOWN Due to a hardware error or other condition, the state of the

shutter cannot be determined.
WFS_CIM_SHTNOTSUPPORTED The physical device has no shutter or shutter state

reporting is not supported.

fwPositionStatus
The status of the input or output Position. This field specifies the state of the position as one of the
following values:
Value Meaning
WFS_CIM_PSEMPTY The position is empty.
WFS_CIM_PSNOTEMPTY The position is not empty.
WFS_CIM_PSUNKNOWN Due to a hardware error or other condition, the state of the

position cannot be determined.
WFS_CIM_PSNOTSUPPORTED The device is not capable of reporting whether or not items

are at the output position.

fwTransport
Specifies the state of the transport mechanism as one of the following values:
Value Meaning
WFS_CIM_TPOK The transport is in a good state.
WFS_CIM_TPINOP The transport is inoperative due to a hardware failure or

media jam.
WFS_CIM_TPUNKNOWN Due to a hardware error or other condition, the state of the

transport cannot be determined.
WFS_CIM_TPNOTSUPPORTED The physical device has no transport or transport state

reporting is not supported.

fwTransportStatus
Returns information regarding items which may on the transport. If the device is a Cash Recycler it
is possible that items will be on the transport due to a previous dispense operation, in which case
the status will be WFS_CIM_TPSTATNOTEMPTY. The possible values of this field are:
Value Meaning
WFS_CIM_TPSTATEMPTY The transport is empty.
WFS_CIM_TPSTATNOTEMPTY The transport is not empty, the items have not been

in customer access.
WFS_CIM_TPSTATNOTEMPTYCUST Items which a customer has had access to are on the

transport.

CWA 14050-15:2003 (E)

13

WFS_CIM_TPSTATNOTEMPTY_UNK Due to a hardware error or other condition it is not
known whether there are items on the transport.

WFS_CIM_TPSTATNOTSUPPORTED The device is not capable of reporting whether or not
items are on the transport.

lpszExtra
A string of vendor-specific information consisting of “key=value” sub-strings. Each sub-string is
null-terminated, with the final sub-string terminating with two null characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which rely on the lpszExtra parameter may not be device or vendor-independent.

4.2 WFS_INF_CIM_CAPABILITIES

Description This command is used to retrieve the capabilities of the cash acceptor.

Input Param None.

Output Param LPWFSCIMCAPS lpCaps;

typedef struct _wfs_cim_caps
{
WORD wClass;
WORD fwType;
WORD wMaxCashInItems;
BOOL bCompound;
BOOL bShutter;
BOOL bShutterControl;
BOOL bSafeDoor;
BOOL bCashBox;
BOOL bRefill;
WORD fwIntermediateStacker;
BOOL bItemsTakenSensor;
BOOL bItemsInsertedSensor;
WORD fwPositions;
WORD fwExchangeType;
WORD fwRetractAreas;
WORD fwRetractTransportActions;
WORD fwRetractStackerActions;
LPSTR lpszExtra;
} WFSCIMCAPS, * LPWFSCIMCAPS;

wClass
Supplies the logical service class. Value is:
WFS_SERVICE_CLASS_CIM

fwType
Supplies the type of CIM as one of the following values:
Value Meaning
WFS_CIM_TELLERBILL The CIM is a Teller Bill Acceptor.
WFS_CIM_SELFSERVICEBILL The CIM is a Self Service Bill Acceptor.
WFS_CIM_TELLERCOIN The CIM is a Teller Coin Acceptor.
WFS_CIM_SELFSERVICECOIN The CIM is a Self Service Coin Acceptor.

wMaxCashInItems
Supplies the maximum number of items that can be accepted in a single cash in operation. Normally
reflects hardware limitations of the device.

bCompound
Specifies whether or not the logical device is part of a compound physical device and is either
TRUE or FALSE.

bShutter
If this flag is true explicit shutter control through the commands
WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER is supported.

bShutterControl
If set to TRUE the shutter is controlled implicitly by the service provider. If set to FALSE the

CWA 14050-15:2003 (E)

14

shutter must be controlled explicitly by the application using the
WFS_CMD_CIM_OPEN_SHUTTER and the WFS_CMD_CIM_CLOSE_SHUTTER commands.
This field is always set to TRUE if the device has no shutter. This field applies to all shutters and
all output positions.

bSafedoor
Specifies whether the WFS_CMD_CIM_OPEN_SAFE_DOOR command is supported.

bCashBox
This field is only applicable to CIM types WFS_CIM_TELLERBILL and
WFS_CIM_TELLERCOIN. It specifies whether or not the Tellers have been assigned a Cash Box.

fwIntermediateStacker
Specifies the number of items the intermediate stacker for Cash-In can hold. Zero means that there
is no intermediate stacker for Cash-In available.

bItemsTakenSensor
Specifies whether or not the CIM can detect when items at the exit position are taken by the user. If
set to TRUE the service provider generates an accompanying WFS_SRVE_CIM_ITEMS_TAKEN
event. If set to FALSE this event is not generated. This field relates to all output positions.

bItemsInsertedSensor
Specifies whether the CIM has the ability to detect when items have been inserted by the user. If set
to TRUE the service provider generates an accompanying WFS_SRVE_CIM_ITEMSINSERTED
event. If set to FALSE this event is not generated. This field relates to all input positions.

fwPositions
Specifies the CIM input and output positions which are available as a combination of the following
flags:
Value Meaning
WFS_CIM_POSINLEFT Left input position.
WFS_CIM_POSINRIGHT Right input position.
WFS_CIM_POSINCENTER Center input position.
WFS_CIM_POSINTOP Top input position.
WFS_CIM_POSINBOTTOM Bottom input position.
WFS_CIM_POSINFRONT Front input position.
WFS_CIM_POSINREAR Rear input position.
WFS_CIM_POSOUTLEFT Left output position.
WFS_CIM_POSOUTRIGHT Right output position.
WFS_CIM_POSOUTCENTER Center output position.
WFS_CIM_POSOUTTOP Top output position.
WFS_CIM_POSOUTBOTTOM Bottom output position.
WFS_CIM_POSOUTFRONT Front output position.
WFS_CIM_POSOUTREAR Rear output position

fwExchangeType
Specifies the type of cash unit exchange operations supported by the CIM. Values are a
combination of the following flags:
Value Meaning
WFS_CIM_EXBYHAND The CIM supports manual replenishment either by

emptying the cash unit by hand or by replacing the cash
unit.

WFS_CIM_EXTOCASSETTES The CIM supports moving items from the replenishment
cash unit to the bill cash units.

WFS_CIM_CLEARRECYCLER The CIM supports the emptying of recycle cash units.
WFS_CIM_DEPOSITINTO The CIM supports moving items from the deposit entrance

to the bill cash units.

fwRetractAreas
Specifies the areas to which items may be retracted. This field will be set to a combination of the
following flags:
Value Meaning
WFS_CIM_RA_RETRACT Items may be retracted to the retract cash unit.
WFS_CIM_RA_TRANSPORT Items may be retracted to the transport.

CWA 14050-15:2003 (E)

15

WFS_CIM_RA_STACKER Items may be retracted to the intermediate stacker.
WFS_CIM_RA_BILLCASSETTES Items may be retracted to recycle cassettes.
WFS_CIM_RA_NOTSUPP The CIM does not have the ability to retract.

fwRetractTransportActions
Specifies the actions which may be performed on items which have been retracted to the transport.
This field will be one of the following values:
Value Meaning
WFS_CIM_RETRACT The items may be retracted to a retract cash unit.
WFS_CIM_NOTSUPP The CIM does not have the ability to retract from the

transport.

fwRetractStackerActions
Specifies the actions which may be performed on items which have been retracted to the stacker. If
the device does not have a retract capability this field will be WFS_CIM_NOTSUPP. Otherwise is
will be set to one of the following values:
Value Meaning
WFS_CIM_PRESENT The items may be moved to the exit position.
WFS_CIM_RETRACT The items may be retracted to a retract cash unit.
WFS_CIM_NOTSUPP The CIM does not have the ability to retract from the stacker.

lpszExtra
A string of vendor-specific information consisting of “key=value” sub-strings. Each sub-string is
null-terminated, with the final sub-string terminating with two null characters.

The parameter for paragraph 6 handling [Ref. 4] is reported in lpszExtra as follows:
P6=1 => paragraph 6 handling and only level 2 notes will not be returned to the customer

in a cash in transaction
P6=2 => paragraph 6 handling and level 2 and level 3 notes will not be returned to the

customer in a cash in transaction

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which rely on the lpszExtra parameter may not be device or vendor-independent.

4.3 WFS_INF_CIM_CASH_UNIT_INFO

Description This command is used to obtain information about the status and contents of the cash in units and
recycle units in the CIM.

Where a logical cash in unit or recycle unit is configured but there is no corresponding physical cash
unit currently present in the device, information about the missing cash in unit or recycle unit will still
be returned in the lppCashIn field of the output parameter. The status of the cash in unit or recycle
unit will be reported as WFS_CIM_STATCUMISSING.

It is possible that one logical cash in unit or recycle unit may be associated with more than one
physical cash unit. In this case, the number of cash unit structures returned in lpCashInfo will reflect
the number of logical cash in units or recycle units in the CIM. That is, if a system contains four
physical cash in units but two of these are treated as one logical cash in unit, lpCashInfo will contain
information about the three logical cash in units and a usCount of 3. Information about the physical
cash in unit(s) or recycle unit(s) associated with a logical cash in unit or recycle unit is contained in
the WFSCDMCASHUNIT structure representing the logical cash in unit or recycle unit.

It is also possible that multiple logical cash in units or recycle units may be associated with one
physical cash unit. This should only occur if the physical cash unit is capable of handling this
situation, i.e. if it can store multiple denominations and report meaningful count and replenishment
information for each denomination. In this case the information returned in lpCashInfo will again
reflect the number of logical cash in units or recycle units in the CIM.

CWA 14050-15:2003 (E)

16

Counts
The value of the ulCount field of the WFSCIMNOTENUMBER structure is a software count and
therefore may not represent the actual number of items in the cash unit.

Threshold Events
The threshold event, WFS_USRE_CIM_CASHUNITTHRESHOLD, can be triggered either by
hardware sensors in the device or by the ulCount reaching the ulMaximum value.

The application can check if the device has this capability by querying the bHardwareSensors field of
the physical cash unit structure. If any of the physical cash units associated with the logical cash unit
have this capability, then threshold events based on hardware sensors may be triggered.

In the situation where the cash unit is associated with multiple physical cash units.
WFS_SRVE_CIM_CASHUNITINFOCHANGED can be generated when each of the physical cash
units reaches the threshold. When the final physical cash unit reaches the threshold, the
WFS_USRE_CIM_CASHUNITTHRESHOLD event will be are generated.

Exchanges
If a physical cash unit is removed when the device is not in the exchange state the status of the
physical cash unit will be set to WFS_CIM_STATMANIP and the values of the physical cash unit
prior to its’ removal will be returned in any subsequent WFS_INF_CIM_CASH_UNIT_INFO
command. The physical cash unit will not be used in any operation. The application must perform an
exchange operation specifying the new values for the physical cash unit in order to recover the
situation.

Recyclers
Through the CIM interface a service provider does not report cash-out cash units and through the
CDM interface it does not report cash in cash units. But both device classes report the recycling cash
units (WFS_CIM_TYPERECYCLING).

Input Param None.

Output Param LPWFSCIMCASHINFO lpCashInfo;

typedef struct _wfs_cim_cash_info
{

USHORT usCount;
LPWFSCIMCASHIN * lppCashIn;

} WFSCIMCASHINFO, *LPWFSCIMCASHINFO;

usCount
Number of WFSCIMCASHIN structures returned in lppCashIn.

lppCashIn
Pointer to an array of pointers to WFSCIMCASHIN structures:

typedef struct _wfs_cim_cash_in
{
USHORT usNumber;
DWORD fwType;
DWORD fwItemType;
CHAR cUnitID[5];
CHAR cCurrencyID[3];
ULONG ulValues;
ULONG ulCashInCount;
ULONG ulCount;
ULONG ulMaximum;
USHORT usStatus;
BOOL bAppLock;
LPWFSCIMNOTENUMBERLIST lpNoteNumberList;
USHORT usNumPhysicalCUs;
LPWFSCIMPHCU * lppPhysical;
LPSTR lpszExtra;
} WFSCIMCASHIN, *LPWFSCIMCASHIN;

usNumber
Index number of the cash unit structure. Each structure has a unique logical number starting with
a value of one (1) for the first structure, and incrementing by one for each subsequent structure.

CWA 14050-15:2003 (E)

17

fwType
Specifies the type of cash unit takes one of the following values:
Value Meaning
WFS_CIM_TYPERECYCLING Recycle cash unit. This type of cash unit is present

only when the device is a Cash Recycler. It can be
used for cash dispensing.

WFS_CIM_TYPECASHIN Cash-In cash unit.
WFS_CIM_TYPEREPCONTAINER Replenishment container. A cash unit can be refilled

from a replenishment container.
WFS_CIM_TYPERETRACTCASSETTE Retract cash unit.

fwItemType
Specifies the type of items the Cash Unit takes as a combination of the following flags:
Value Meaning
WFS_CIM_CITYPALL The cash in unit takes all banknote types.
WFS_CIM_CITYPUNFIT The cash in unit takes all unfit banknotes.
WFS_CIM_CITYPINDIVIDUAL The cash in unit or recycler takes all types of bank notes

specified in an individual list
WFS_CIM_CITYPLEVEL2 Paragraph 6 level 2 notes are stored in this cash in unit
WFS_CIM_CITYPLEVEL3 Paragraph 6 level 3 notes are stored in this cash in unit.

cUnitID
The Cash Unit Identifier.

cCurrencyID
A three character array storing the ISO format Currency ID [see Ref. 2]. This value will be an
array of three ASCII 0x20h characters for cash units which contain items of more than one
currency type or items to which currency is not applicable. If the wStatus field for this cash unit
is WFS_CIM_STATCUNOVAL it is the responsibility of the application to assign a value to
this field.

ulValues
Supplies the value of a single item in the cash unit. This value is expressed in minimum dispense
units [see Section 0]. If the cCurrencyID field for this cash unit is empty then this field will
contain 0. If the wStatus field for this cash unit is WFS_CIM_STATCUNOVAL it is the
responsibility of the application to assign a value to this field.

ulCashInCount
Count of items that have entered the cash unit. This counter is incremented whenever a bill
enters the physical cash unit for any reason. This value is persistent.

ulCount
Total number of notes of all types in the cash unit. If the cash unit is a recycle cash unit then this
value may not be the same as the value of ulCashInCount, the value may be decremented as a
result of a dispense operation on the CDM interface. For a retract cash unit this value specifies
the number of retracts. This value will be increased by one for every cash in transaction storing
level 2 notes. This value is persistent.

ulMaximum
When the ulCount reaches this value the threshold event
WFS_USRE_CIM_CASHUNITTHRESHOLD will be generated. If this value is non-0 then
hardware sensors in the device do not trigger threshold events.

usStatus
Describes the status of the cash unit as one of the following values:
Value Meaning
WFS_CIM_STATCUOK The cash unit is in a good state.
WFS_CIM_STATCUFULL The cash in cash unit or recycle unit is full.
WFS_CIM_STATCUHIGH The cash in cash unit is almost full (threshold).
WFS_CIM_STATCUEMPTY The recycle unit is empty.
WFS_CIM_STATCUINOP The cash in cash unit or recycle unit is inoperative.
WFS_CIM_STATCUMISSING The cash in cash unit is missing.

CWA 14050-15:2003 (E)

18

WFS_CIM_STATCUNOVAL The values of the specified cash unit are not available.
This can be the case when the cash unit is changed
without using the operator functions.

WFS_CIM_STATCUNOREF There is no reference value available for the notes in this
cash unit. The cash unit has not been configured.

WFS_CIM_STATCUMANIP The cash unit has been changed when the device was not
in the exchange state. Items cannot be accepted into this
cash unit.

bAppLock
This field does not apply to retract cash units. If this value is TRUE items cannot be accepted
into the cash unit. This parameter is ignored if the hardware does not support this.

lpNoteNumberList
Pointer to a WFSCIMNOTENUMBERLIST structure. If the cash unit is a retract cash unit this
pointer will be NULL except when the retract cash unit accepts level 2 notes. In this case the
number of level 2 notes is returned.

typedef struct _wfs_cim_note_number_list
{
USHORT usNumOfNoteNumbers;
LPWFSCIMNOTENUMBER* lppNoteNumber;
} WFSCIMNOTENUMBERLIST, *LPWFSCIMNOTENUMBERLIST;

usNumOfNoteNumbers
Number of banknote types the cash unit contains, i.e. the size of the lppNoteNumber list.

lppNoteNumber
List of banknote numbers the cash unit contains. A pointer to an array of pointers to
WFSCIMNOTENUMBER structures:

typedef struct _wfs_cim_note_number
{
USHORT usNoteID;
ULONG ulCount;
} WFSCIMNOTENUMBER, *LPWFSCIMNOTENUMBER;

usNoteID
Identification of note type.

ulCount
Actual count of items. This value is persistent. The value is incremented each time items are
moved to a cash unit by a WFSExecute command. In the case of recycle cash units this
count is decremented whenever items leave the cash unit.

usNumPhysicalCUs
This value indicates the number of physical cash unit structures returned. It must be at least 1.

lppPhysical
Pointer to an array of pointers to physical cash unit structures:

typedef struct _wfs_cim_physicalcu
{
LPSTR lpPhysicalPositionName;
CHAR cUnitID[5];
ULONG ulCashInCount;
ULONG ulCount;
ULONG ulMaximum;
USHORT usPStatus;
BOOL bHardwareSensors;
LPSTR lpszExtra;
} WFSCIMPHCU, * LPWFSCIMPHCU;

lpPhysicalPositionName
A name identifying the physical location of the cash unit within the CIM. This field can be
used by CIMs which are compound with a CDM to identify shared cash units.

cUnitID
A 5 character array uniquely identifying the physical cash unit.

CWA 14050-15:2003 (E)

19

ulCashInCount
Count of items that have entered the cash in unit. This counter is incremented whenever a bill
enters the physical cash unit for any reason. This value is persistent.

ulCount
Actual count of items in the physical cash unit. If the cash unit is a recycle cash unit then this
value may not be the same as the value of ulCashInCount. This value is persistent.

ulMaximum
Maximum count of items in the physical cash unit. This is only for informational purposes.
No threshold event will be generated.

usPStatus
Supplies the status of the physical cash unit as one of the following values:
Value Meaning
WFS_CIM_STATCUOK The cash unit is in a good state.
WFS_CIM_STATCUFULL The cash unit is full.
WFS_CIM_STATCUHIGH The cash unit is almost full (nearing the threshold defined

by ulMaximum).
WFS_CIM_STATCULOW The cash unit is almost empty (nearing the threshold

defined by ulMinimum).
WFS_CIM_STATCUEMPTY The cash unit is empty.
WFS_CIM_STATCUINOP The cash unit is inoperative.
WFS_CIM_STATCUMISSING The cash unit is missing.
WFS_CIM_STATCUNOVAL The values of the specified cash unit are not available.
WFS_CIM_STATCUNOREF There is no reference value available for the notes in this

cash unit. The cash unit has not been configured.
WFS_CIM_STATMANIP The cash unit has been changed when the device was not

in the exchange state.

bHardwareSensors
Specifies whether or not threshold events can be generated based on hardware sensors in the
device. If this value is TRUE for any of the physical cash units related to a logical cash unit
then threshold events may be generated based on hardware sensors as opposed to logical
counts.

lpszExtra
A string of vendor-specific information about the physical cash unit consisting of “key=value”
sub-strings. Each sub-string is null-terminated, with the final sub-string terminating with two
null characters.

lpszExtra
A string of vendor-specific information about the logical cash unit consisting of “key=value” sub-
strings. Each sub-string is null-terminated, with the final sub-string terminating with two null
characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

4.4 WFS_INF_CIM_TELLER_INFO

Description This command allows the application to obtain counts for each currency assigned to the teller. It also
enables the application to obtain the position assigned to each Teller. If the input parameter is NULL,
this command will return information for all Tellers and all currencies. The teller information is
persistent.

Input Param LPWFSCIMTELLERINFO lpTellerInfo;

typedef struct _wfs_cim_teller_info
{
USHORT usTellerID;
CHAR cCurrencyID[3];
} WFSCIMTELLERINFO, *LPWFSCIMTELLERINFO;

CWA 14050-15:2003 (E)

20

usTellerID
Identification of teller. If the value of usTellerID is not valid the error
WFS_ERR_CIM_INVALIDTELLERID is reported.

cCurrencyID
Three character ISO format currency identifier [Ref. 2]
This parameter can be an array of three ASCII 0x20h characters. In this case information on all
currencies will be returned.

Output Param LPWFSCIMTELLERDETAILS* lppTellerDetails;

Pointer to a null-terminated array of pointers to teller info structures.

typedef struct _wfs_cim_teller_details
{

USHORT usTellerID;
WORD fwInputPosition;
WORD fwOutputPosition;
LPWFSCIMTELLERTOTALS* lppTellerTotals;

} WFSCIMTELLERDETAILS, * LPWFSCIMTELLERDETAILS;

usTellerID
Identification of teller.

fwInputPosition
The input position assigned to the teller for cash entry. The value is set to one of the following
values:
Value Meaning
WFS_CIM_POSNULL No position is assigned to the Teller.
WFS_CIM_POSINLEFT The left position is assigned to the Teller.
WFS_CIM_POSINRIGHT The right position is assigned to the Teller.
WFS_CIM_POSINCENTER The center position is assigned to the Teller.
WFS_CIM_POSINTOP The top position is assigned to the Teller.
WFS_CIM_POSINBOTTOM The bottom position is assigned to the Teller.
WFS_CIM_POSINFRONT The front position is assigned to the Teller.
WFS_CIM_POSINREAR The rear position is assigned to the Teller.

fwOutputPosition
The output position from which cash is presented to the teller. The value is set to one of the
following values:
Value Meaning
WFS_CIM_POSNULL No position is assigned to the Teller.
WFS_CIM_POSOUTLEFT The left position is assigned to the Teller.
WFS_CIM_POSOUTRIGHT The right position is assigned to the Teller.
WFS_CIM_POSOUTCENTER The center position is assigned to the Teller.
WFS_CIM_POSOUTTOP The top position is assigned to the Teller.
WFS_CIM_POSOUTBOTTOM The bottom position is assigned to the Teller.
WFS_CIM_POSOUTFRONT The front position is assigned to the Teller.
WFS_CIM_POSOUTREAR The rear position is assigned to the Teller.

lppTellerTotals
Pointer to a null-terminated array of pointers to teller total structures.

typedef struct _wfs_cim_teller_totals
{
CHAR cCurrencyID[3];
ULONG ulItemsReceived;
ULONG ulItemsDispensed;
ULONG ulCoinsReceived;
ULONG ulCoinsDispensed;
ULONG ulCashBoxReceived;
ULONG ulCashBoxDispensed;
} WFSCIMTELLERTOTALS, * LPWFSCIMTELLERTOTALS

cCurrencyID
Three character ISO format currency identifier [Ref. 2]

CWA 14050-15:2003 (E)

21

ulItemsReceived
The total amount of item currency (excluding coins) accepted. The amount is expressed in
minimum dispense units (see WFS_INF_CIM_CURRENCY_EXP).

ulItemsDispensed
The total amount of item currency(excluding coins) accepted. The amount is expressed in
minimum dispense units (see WFS_INF_CIM_CURRENCY_EXP).

ulCoinsReceived
The total amount of coin currency accepted. The amount is expressed in minimum dispense
units (see WFS_INF_CIM_CURRENCY_EXP).

ulCoinsDispensed
The total amount of coin currency dispensed. The amount is expressed in minimum dispense
units (see WFS_INF_CIM_CURRENCY_EXP).

 ulCashBoxReceived
The total amount of cash box currency accepted. The amount is expressed in minimum dispense
units (see WFS_INF_CIM_CURRENCY_EXP).

ulCashBoxDispensed
The total amount of cash box currency dispensed. The amount is expressed in minimum dispense
units (see WFS_INF_CIM_CURRENCY_EXP).

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_CIM_INVALIDCURRENCY Specified currency not currently available
WFS_ERR_CIM_INVALIDTELLERID Invalid Teller ID

Comments None.

4.5 WFS_INF_CIM_CURRENCY_EXP

Description This command returns each exponent assigned to each currency known to the service provider.

Input Param None.

Output Param LPWFSCIMCURRENCYEXP * lppCurrencyExp;
Pointer to a null-terminated array of pointers to currency exponent structures:

typedef struct _wfs_cim_currency_exp
{

CHAR cCurrencyID[3];
SHORT sExponent;

} WFSCIMCURRENCYEXP, *LPWFSCIMCURRENCYEXP;

cCurrencyID
Currency identifier in ISO 4217 format [see Ref. 2].

sExponent
Currency exponent in ISO 4217 format [see Ref. 2].

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments For each currency ISO 4217 defines the currency identifier (a three character code) and a currency
unit (e.g., German mark, Italian lira). In the interface defined by this specification, every money
amount is specified in terms of multiples of the minimum dispense unit, which is equal to the currency
unit times the currency exponent. Thus an amount parameter relates to the actual cash amount as
follows:

<cash_amount> = <money_amount_parameter> * 10^<sExponent>

Example #1 — Germany
Currency identifier is ‘DEM’
Currency unit is 1 German mark (= 100 pfennig)

A service provider is developed for an ATM that can dispense coins down to one pfennig. The

CWA 14050-15:2003 (E)

22

currency exponent (sExponent) is set to -2 (minus two), so the minimum dispense unit is one pfennig
(1 * 10^-2 mark); all amounts at the XFS interface are in Pfennig’s. Thus a money amount parameter
of 10050 is 100 marks and 50 pfennig.

Example #2 — Italy
Currency identifier is ‘LIT’
Currency unit is 1 Italian lira

A service provider is required to dispense a minimum amount of 100 lire. The currency exponent
(sExponent) is set to +2 (plus two), so the minimum dispense unit is 100 lire; all amounts at the XFS
interface are in multiples of 100 lire. Thus a amount parameter of 150 is 15000 lire.

4.6 WFS_INF_CIM_BANKNOTE_TYPES

Description This command is used to obtain information about the banknote types that can be detected by the
banknote reader.

Input Param None.

Output Param LPWFSCIMNOTETYPELIST lpNoteTypeList;

typedef struct _wfs_cim_note_type_list
{

USHORT usNumOfNoteTypes;
LPWFSCIMNOTETYPE *lppNoteTypes;

} WFSCIMNOTETYPELIST, *LPWFSCIMNOTETYPELIST;

usNumOfNoteTypes
Number of banknote types the banknote reader supports, i.e. the size of the lppNoteTypes list.

lppNoteTypes
List of banknote types the banknote reader supports. A pointer to an array of pointers to
WFSCIMNOTETYPE structures:

typedef struct _wfs_cim_note_type
{

USHORT usNoteID;
CHAR cCurrencyID[3];
ULONG ulValues;
USHORT usRelease;
BOOL bConfigured;

} WFSCIMNOTETYPE, *LPWFSCIMNOTETYPE;

usNoteID
Identification of note type.

cCurrencyID
Currency ID in ISO 4217 format [see Ref. 2].

ulValues
The value of a single item expressed in minimum dispense units.

usRelease
The release of the banknote type. The higher this number, the newer the release. Zero means that
there is only one release of that banknote type. This value has not been standardised and
therefore a release number of the same banknote will not necessarily have the same value in
different systems.

bConfigured
Specifies whether or not the banknote reader recognizes this note type. If TRUE the banknote
reader will accept this note type during a Cash-In operation, if FALSE the banknote reader will
refuse this note type.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 14050-15:2003 (E)

23

4.7 WFS_INF_CIM_CASH_IN_STATUS

Description This command is used to get information about the status of the last cash in transaction. This value is
persistent and is valid until the next WFS_CMD_CIM_CASH_IN_START.

Input Param None.

Output Param LPWFSCIMCASHINSTATUS lpStatus;

typedef struct _wfs_cim_cash_in_status
{

WORD wStatus;
USHORT usNumOfRefused;
LPWFSCIMNOTENUMBERLIST lpNoteNumberList;
LPSTR lpszExtra;

} WFSCIMCASHINSTATUS, *LPWFSCIMCASHINSTATUS;

wStatus
Status of the Cash-In transaction. Possible values are:
Value Meaning
WFS_CIM_CIOK The cash in transaction is complete.
WFS_CIM_CIROLLBACK The cash in transaction was rolled back.
WFS_CIM_CIACTIVE There is a cash in transaction active.
WFS_CIM_CIRETRACT The cash-in transaction ended with the items being

retracted.
WFS_CIM_CIUNKNOWN The state of the cash in transaction is unknown.

usNumOfRefused
Specifies the number of items refused during the Cash-In transaction period.

lpNoteNumberList
List of banknote types that were inserted, identified and accepted during the Cash-In transaction
period. If notes have been rolled back they will be included in this list. For a description of the
WFSCIMNOTENUMBERLIST structure see the definition of the command
WFS_INF_CIM_CASH_UNIT_INFO.

lpszExtra
A string of vendor-specific information consisting of “key=value” sub-strings. Each sub-string is
null-terminated, with the final sub-string terminating with two null characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

4.8 WFS_INF_CIM_GET_P6_INFO

Description This command is used to get information about the number of level 2 / level 3 notes on the
intermediate stacker and the number of created level2 / level 3 signatures.

Input Param None.

Output Param: LPWFSCIMP6INFO *lppP6Info
Pointer to a null terminated array of pointers to p6Info structures. One structure for every level.

typedef struct _wfs_cim_P6_Info
{

USHORT usLevel;
LPWFSCIMNOTENUMBERLIST lpNoteNumberList;
USHORT usNumOfSignatures;

} WFSCIMP6INFO, *LPWFSCIMP6INFO;

usLevel
Defines the note level. Possible values are:
Value Meaning
WFS_CIM_LEVEL_2 Information for level 2 notes.
WFS_CIM_LEVEL_3 Information for level 3 notes.

CWA 14050-15:2003 (E)

24

lpNoteNumberList
List of banknote types that were recognised as level x notes. If the pointer is NULL, no level x
notes were recognised. For a description of the WFSCIMNOTENUMBERLIST structure see the
definition of the command WFS_INF_CIM_CASH_UNIT_INFO.

usNumOfSignatures
Number of level x signatures of this cash in transaction. If it is zero no signatures are available.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

4.9 WFS_INF_CIM_GET_P6_SIGNATURE

Description This command is used to get one specific signature.

Input Param LPWFSCIMGETP6SIGNATURE lpGetP6Signature;

typedef struct _wfs_cim_get_P6_signature
{

USHORT usLevel;
USHORT usIndex;

} WFSCIMGETP6SIGNATURE, *LPWFSCIMGETP6SIGNATURE;

usLevel
Defines the level of the wanted signature. Possible values are:
Value Meaning
WFS_CIM_LEVEL_2 The application wants a level 2 signature.
WFS_CIM_LEVEL_3 The application wants a level 3 signature.

usIndex
Specifies the index (0 to usNumOfLevelxSignatures-1) of the required signature.

Output Param LPWFSCIMP6SIGNATURE lpP6Signature;

typedef struct _wfs_cim_P6_signature
{

USHORT usNoteId;
ULONG ulLength;
DWORD dwOrientation;
LPVOID lpSignature;

} WFSCIMP6SIGNATURE, *LPWFSCIMP6SIGNATURE;

usNoteID
Identification of note type.

ulLength
Length of the signature in bytes.

dwOrientation
Orientation of the entered banknote. Specified as one of the following flags:
Value Meaning
WFS_CIM_ORFRONTTOP If note is inserted wide side as the leading edge, the note

was inserted with the front image facing up and the top
edge of the note was inserted first. If the note is inserted
short side as the leading edge, the note was inserted with
the front image face up and the left edge was inserted
first.

WFS_CIM_ORFRONTBOTTOM If note is inserted wide side as the leading edge, the note
was inserted with the front image facing up and the
bottom edge of the note was inserted first. If the note is
inserted short side as the leading edge, the note was
inserted with the front image face up and the right edge
was inserted first.

WFS_CIM_ORBACKTOP If note is inserted wide side as the leading edge, the note
was inserted with the back image facing up and the top

CWA 14050-15:2003 (E)

25

edge of the note was inserted first. If the note is inserted
short side as the leading edge, the note was inserted with
the back image face up and the left edge was inserted
first.

WFS_CIM_ORBACKBOTTOM If note is inserted wide side as the leading edge, the note
was inserted with the back image facing up and the
bottom edge of the note was inserted first. If the note is
inserted short side as the leading edge, the note was
inserted with the back image face up and the right edge
was inserted first.

WFS_CIM_ORUNKNOWN The orientation for the inserted note can not be
determined

WFS_CIM_ORNOTSUPPORTED The hardware is not capable to determine the orientation

lpSignature
Pointer to the returned signature.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments The application has to call this command multiple in a loop to get all signatures.

CWA 14050-15:2003 (E)

26

5. Execute Commands

5.1 WFS_CMD_CIM_CASH_IN_START

Description Before initiating a Cash-In operation, an application must issue the
WFS_CMD_CIM_CASH_IN_START command to begin a Cash-In Transaction. During a Cash-In
Transaction any number of WFS_CMD_CIM_CASH_IN commands may be issued. The transaction
is ended when either a WFS_CMD_CIM_ROLLBACK or WFS_CMD_CIM_CASH_IN_END
command is sent.

Input Param LPWFSCIMCASHINSTART lpCashInStart;

typedef struct _wfs_cim_cash_in_start
{
USHORT usTellerID;
BOOL bUseRecycleUnits;
WORD fwOutputPosition;
WORD fwInputPosition;
} WFSCIMCASHINSTART, * LPWFSCIMCASHINSTART;

lpusTellerID
Identification of teller. This field is not applicable to Self-Service CIMs and should be set to 0.

bUseRecycleUnits
Specifies whether or not the recycle cash units should be used for money cashed in during the
transaction period. This parameter will be ignored if there are no recycle cash units or the hardware
does not support this.

fwOutputPosition
The output position where the items will be presented to the customer in the case of a cash in rollback.
The position is set to one of the following values:

Value Meaning
WFS_CIM_POSNULL The items will be presented to the default configuration.
WFS_CIM_POSOUTLEFT The items will be presented to the left output position.
WFS_CIM_POSOUTRIGHT The items will be presented to the right output position.
WFS_CIM_POSOUTCENTER The items will be presented to the center output position.
WFS_CIM_POSOUTTOP The items will be presented to the top output position.
WFS_CIM_POSOUTBOTTOM The items will be presented to the bottom output position.
WFS_CIM_POSOUTFRONT The items will be presented to the front output position.
WFS_CIM_POSOUTREAR The items will be presented to the rear output position.

fwInputPosition
Specifies from which position the cash should be inserted. The position is set to one of the
following values:
Value Meaning
WFS_CIM_POSNULL The cash is inserted from the default configuration.
WFS_CIM_POSINLEFT The cash is inserted from the left input position.
WFS_CIM_POSINRIGHT The cash is inserted from the right input position.
WFS_CIM_POSINCENTER The cash is inserted from the center input position.
WFS_CIM_POSINTOP The cash is inserted from the top input position.
WFS_CIM_POSINBOTTOM The cash is inserted from the bottom input position.
WFS_CIM_POSINFRONT The cash is inserted from the front input position.
WFS_CIM_POSINREAR The cash is inserted from the rear input position.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_CIM_INVALIDTELLERID The Teller Id is invalid.
WFS_ERR_CIM_UNSUPPOSITION The position specified is not supported.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in the exchange state.

CWA 14050-15:2003 (E)

27

WFS_ERR_CIM_CASHINACTIVE The CIM is already in the cash in state due to a
previous WFS_CMD_CIM_CASH_IN_START
command.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

5.2 WFS_CMD_CIM_CASH_IN

Description This command moves items into the CIM from an input position.

The items may pass through the banknote reader for identification. Failure to identify items does not
mean that the command has failed - even if some or all of the items are rejected by the banknote
reader, the command may return WFS_SUCCESS. In this case a WFS_EXEE_CIM_INPUTREFUSE
event will be sent to report the rejection.

If the device does not have a banknote reader then the output parameter will be NULL.

If the device has a cash-in stacker then this command will cause inserted items to be moved there.
Items will be held on the stacker until the current Cash-In Transaction is either cancelled by
WFS_CMD_CIM_ROLLBACK or confirmed by WFS_CMD_CIM_CASH_IN_END. If there is no
cash-in stacker then this command will move items directly to the cash units and
WFS_CMD_CIM_ROLLBACK will not be supported.

The bShutterControl field of the LPWFSCIMCAPS structure returned from the
WFS_INF_CIM_CAPABILITIES query will determine whether the shutter is controlled implicitly by
this command or whether the application must explicitly open and close the shutter using the
WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands.

It is possible that a device may divide bill or coin accepting into a series of sub-operations under
hardware control. In this case a WFS_EXEE_CIM_SUBCASHIN event may be sent after each sub-
operation, if the hardware capabilities allow it.

Input Param None.

Output Param LPWFSCIMNOTENUMBERLIST lpNoteNumberList;

lpNoteNumberList
List of banknote numbers which have been identified and accepted during execution of this
command. If the whole input was refused then this parameter will be NULL and the
WFS_EXEE_CIM_INPUTREFUSE event will be generated. If only part of the input was refused
then this parameter will contain the banknote numbers of the accepted items and the
WFS_EXEE_CIM_INPUTREFUSE event will be generated. For a description of the
LPWFSCIMNOTENUMBERLIST structure see the WFS_INF_CIM_CASH_UNIT_INFO
command.

The lpNoteNumberList contains all notes accepted including any level 2 or level 3 notes found
during the Cash In operation.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

CWA 14050-15:2003 (E)

28

Value Meaning
WFS_ERR_CIM_CASHUNITERROR A problem occurred with a Cash Unit. A

WFS_EXEE_CIM_CASHUNITERROR event
will be sent with the details.

WFS_ERR_CIM_TOOMANYITEMS There were too many items inserted for cash
in. The Cash-In stacker is full.

WFS_ERR_CIM_NOITEMS There were no items to cash in.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM service is in an exchange state.
WFS_ERR_CIM_SHUTTERNOTCLOSED Shutter failed to close.
WFS_ERR_CIM_NOCASHINACTIVE There is no Cash-In transaction active.
WFS_ERR_CIM_POSITION_NOT_EMPTY The output position is not empty so a cash in is

not possible.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_CIM_CASHUNITERROR A problem occurred with a Cash Unit.
WFS_EXEE_CIM_INPUT_P6 Level 2 and / or level 3 notes are detected.
WFS_EXEE_CIM_INPUTREFUSE A part or all of the amount of the cash in order was

refused.
WFS_EXEE_CIM_NOTEERROR A note detection error occurred.
WFS_EXEE_CIM_SUBCASHIN A Cash In sub-operation has completed. If the Cash In

operation has been divided up into a series of sub-
operations under hardware control this event is
generated each time one of the sub-cash-in operations
completes successfully. It may be used for progress
reporting.

WFS_SRVE_CIM_ITEMSINSERTED Items have been inserted into the cash in position by
the user.

Comments None.

5.3 WFS_CMD_CIM_CASH_IN_END

Description This command ends a Cash-In Transaction. If items are on the stacker as a result of a
WFS_CMD_CIM_CASH_IN command, these items are moved into the cash-in cash units or the
recycle units.

The Cash-In transaction is ended even if this command does not complete successfully.

Input Param None.

Output Param LPWFSCIMCASHINFO lpCashInfo

lpCashInfo
List of cash units that have taken banknotes or coins and the type of banknotes or coins they have
taken. For a description of the WFSCIMCASHINFO structure see the definition of the
WFS_INF_CIM_CASH_UNIT_INFO command.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_CIM_CASHUNITERROR A problem occurred with a Cash Unit. A

WFS_EXEE_CIM_CASHUNITERROR
event will be sent with the details.

WFS_ERR_CIM_NOITEMS There were no items to cash in.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state.
WFS_ERR_CIM_NOCASHINACTIVE There is no Cash-In transaction active.
WFS_ERR_CIM_POSITION_NOT_EMPTY The input or output position is not empty.

CWA 14050-15:2003 (E)

29

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has occurred in one of

the cash units.
WFS_SRVE_CIM_CASHUNITINFOCHANGED A cash unit was changed.
WFS_EXEE_CIM_CASHUNITERROR A problem occurred with the cash unit.

Comments None.

5.4 WFS_CMD_CIM_CASH_IN_ROLLBACK

Description A Cash-In operation has to be handled as a transaction that can be rolled back if a difference occurs
between the amount counted by the CIM and the amount inserted. This command is used to roll back
a Cash-In transaction. It causes all the notes cashed in since the last
WFS_CMD_CIM_CASH_IN_START command to be returned to the customer.

This command ends the current Cash-In Transaction. The Cash-In transaction is ended even if this
command does not complete successfully.

The bShutterControl field of the LPWFSCIMCAPS structure returned from the
WFS_INF_CIM_CAPABILITIES query will determine whether the shutter is controlled implicitly by
this command or whether the application must explicitly control the shutter using the
WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands.

Input Param None.

Output Param NULL will be returned unless there were level 2 or level 3 notes inserted in the cash in transaction
that are not returned to the customer because of paragraph 6 handling.

LPWFSCIMCASHINFO lpCashInfo.

lpCashInfo
List of cash units that have taken banknotes and the type of banknotes they have taken. For a
description of the WFSCIMCASHINFO structure see the definition of the
WFS_INF_CIM_CASH_UNIT_INFO command.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_CIM_CASHUNITERROR A problem occurred with a Cash Unit. A

WFS_EXEE_CIM_CASHUNITERROR event will
be sent with the details.

WFS_ERR_CIM_SHUTTERNOTOPEN Shutter failed to open.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in the exchange state.
WFS_ERR_CIM_NOCASHINACTIVE There is no current Cash-In Transaction.
WFS_ERR_CIM_POSITION_NOT_EMPTY The input or output position is not empty.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a result
of this command:

Value Meaning
WFS_EXEE_CIM_CASHUNITERROR A problem occurred with a Cash Unit.
WFS_SRVE_CIM_ITEMSTAKEN Either the items are available to the user or

have been removed by the user, depending on
the capability of the CIM.

Comments None.

CWA 14050-15:2003 (E)

30

5.5 WFS_CMD_CIM_RETRACT

Description This command retracts items from an output position. Retracted items will be moved to either a
retract bin, the transport or an intermediate stacker area. After the items are retracted the shutter is
closed automatically.

Input Param LPWFSCIMRETRACT lpRetract;

struct _wfs_cim_retract
{

WORD fwOutputPosition;
USHORT usRetractArea;
USHORT usIndex;

} WFSCIMRETRACT, * LPWFSCIMRETRACT;

fwOutputPosition
Specifies the output position from which to retract the bills. Possible values are:

Value Meaning
WFS_CIM_POSNULL The default configuration information should be

used.
WFS_CIM_POSOUTLEFT Retract items from the left output position.
WFS_CIM_POSOUTRIGHT Retract items from the right output position.
WFS_CIM_POSOUTCENTER Retract items from the center output position.
WFS_CIM_POSOUTTOP Retract items from the top output position.
WFS_CIM_POSOUTBOTTOM Retract items from the bottom output position.
WFS_CIM_POSOUTFRONT Retract items from the front output position.
WFS_CIM_POSOUTREAR Retract items from the rear output position.

usRetractArea
This value specifies the area to which the items are to be retracted. Possible values are:

Value Meaning
WFS_CIM_RA_RETRACT Retract the items to a retract cash unit.
WFS_CIM_RA_TRANSPORT Retract the items to the transport.
WFS_CIM_RA_STACKER Retract the items to the intermediate stacker area.
WFS_CIM_RA_BILLCASSETTES Retract the items to the recycle cash units.

usIndex
If usRetractArea is set to WFS_CIM_RA_RETRACT this field is the logical retract position inside
the container into which the cash is to be retracted. This logical number starts with a value of one (1)
for the first retract position and increments by one for each subsequent position. If the container
contains several logical retract cash units (of type WFS_CIM_TYPERETRACTCASSETTE in
command WFS_INF_CIM_CASH_UNIT_INFO), usIndex would be incremented from the first
position of the first retract cash unit to the last position of the last retract cash unit defined in
WFSCIMCASHINFO. The maximum value of usIndex is the sum of the ulMaximum of each retract
cash unit. If usRetractArea is not set to WFS_CIM_RA_RETRACT the value of this field is ignored.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_CIM_CASHUNITERROR The retract bin caused a problem. A

WFS_EXECUTE_EVENT with an id of
WFS_EXEE_CIM_CASHUNITERROR will
be posted with the details.

WFS_ERR_CIM_NOITEMS There were no items to retract.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state.
WFS_ERR_CIM_SHUTTERNOTCLOSED The shutter failed to close.
WFS_ERR_CIM_ITEMSTAKEN Items were present at the output position at

the start of the operation, but were removed
before the operation was complete - some or
all of the items were not retracted.

WFS_ERR_CIM_INVALIDRETRACTPOSITION The usIndex is not supported.

CWA 14050-15:2003 (E)

31

WFS_ERR_CIM_NOTRETRACTAREA The retract area specified in usRetractArea is
not supported.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a result
of this command:

Value Meaning
WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has been reached in the

retract bin.
WFS_EXEE_CIM_CASHUNITERROR An error occurred while attempting to retract to

the retract bin.
WFS_EXEE_CIM_NOTEERROR A note detection error occurred.

Comments None.

5.6 WFS_CMD_CIM_OPEN_SHUTTER

Description This command opens the shutter.

Input Param LPWORD lpfwPosition;

lpfwPosition
Specifies which shutter is to be opened. If the application does not need to specify the shutter, this
field can be set to NULL or to WFS_CIM_POSNULL. Otherwise this field should be set to a one
of the following values:
Value Meaning
WFS_CIM_POSNULL The default configuration information should be used.
WFS_CIM_POSINLEFT Open the shutter of the left input position.
WFS_CIM_POSINRIGHT Open the shutter of the right input position.
WFS_CIM_POSINCENTER Open the shutter of the center input position.
WFS_CIM_POSINTOP Open the shutter of the top input position.
WFS_CIM_POSINBOTTOM Open the shutter of the bottom input position.
WFS_CIM_POSINFRONT Open the shutter of the front input position.
WFS_CIM_POSINREAR Open the shutter of the rear input position.
WFS_CIM_POSOUTLEFT Open the shutter of the left output position.
WFS_CIM_POSOUTRIGHT Open the shutter of the right output position.
WFS_CIM_POSOUTCENTER Open the shutter of the center output position.
WFS_CIM_POSOUTTOP Open the shutter of the top output position.
WFS_CIM_POSOUTBOTTOM Open the shutter of the bottom output position.
WFS_CIM_POSOUTFRONT Open the shutter of the front output position.
WFS_CIM_POSOUTREAR Open the shutter of the rear output position.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_CIM_UNSUPPOSITION The position specified is not supported.
WFS_ERR_CIM_SHUTTERNOTOPEN Shutter failed to open.
WFS_ERR_CIM_SHUTTEROPEN Shutter was already open.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM service is in an exchange state.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a result
of this command:

Value Meaning
WFS_SRVE_CIM_ITEMSTAKEN Either the items are available to the user or have

been removed by the user, depending on the
capability of the CIM.

WFS_SRVE_CIM_ITEMSINSERTED Items have been inserted by the user.

Comments None.

CWA 14050-15:2003 (E)

32

5.7 WFS_CMD_CIM_CLOSE_SHUTTER

Description This command closes the shutter.

Input Param LPWORD lpfwPosition;

lpfwPosition
Specifies which shutter is to be closed. If the application does not need to specify the shutter, this
field can be set to NULL or to WFS_CIM_POSNULL. Otherwise this field should be set to one of
the following values:
Value Meaning
WFS_CIM_POSNULL The default configuration information should be used.
WFS_CIM_POSINLEFT Close the shutter of the left input position.
WFS_CIM_POSINRIGHT Close the shutter of the right input position.
WFS_CIM_POSINCENTER Close the shutter of the center input position.
WFS_CIM_POSINTOP Close the shutter of the top input position.
WFS_CIM_POSINBOTTOM Close the shutter of the bottom input position.
WFS_CIM_POSINFRONT Close the shutter of the front input position.
WFS_CIM_POSINREAR Close the shutter of the rear input position.
WFS_CIM_POSOUTLEFT Close the shutter of the left output position.
WFS_CIM_POSOUTRIGHT Close the shutter of the right output position.
WFS_CIM_POSOUTCENTER Close the shutter of the center output position.
WFS_CIM_POSOUTTOP Close the shutter of the top output position.
WFS_CIM_POSOUTBOTTOM Close the shutter of the bottom output position.
WFS_CIM_POSOUTFRONT Close the shutter of the front output position.
WFS_CIM_POSOUTREAR Close the shutter of the rear output position.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_CIM_UNSUPPOSITION The position specified is not supported.
WFS_ERR_CIM_SHUTTERCLOSED Shutter was already closed.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM service is in an exchange state.
WFS_ERR_CIM_SHUTTERNOTCLOSED Shutter failed to close.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

5.8 WFS_CMD_CIM_SET_TELLER_INFO

Description This command allows the application to initialize counts for each currency assigned to the teller. The
values set by this command are persistent. This command only applies to Teller CIMs.

Input Param LPWFSCIMTELLERUPDATE lpTellerUpdate;

typedef struct _wfs_cim_teller_update
{
USHORT usAction;
LPWFSCIMTELLERDETAILS lpTellerDetails;
} WFSCIMTELLERUPDATE *LPWFSCIMTELLERUPDATE;

usAction
The action to be performed specified as one of the following values:
Value Meaning
WFS_CIM_CREATE_TELLER A Teller is to be added.
WFS_CIM_MODIFY_TELLER Information about an existing Teller is to be modified.
WFS_CIM_DELETE_TELLER A teller is to be removed.

CWA 14050-15:2003 (E)

33

lpTellerDetails
For a specification of the structure WFSCIMTELLERINFO please refer to the
WFS_INF_CIM_TELLER_ INFO command.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_CIM_INVALIDCURRENCY The specified currency is not currently available.
WFS_ERR_CIM_INVALIDTELLERID The Teller ID is invalid.
WFS_ERR_CIM_UNSUPPOSITION The position specified is not supported.
WFS_ERR_CIM_EXCHANGEACTIVE The target teller is currently in the middle of an

exchange operation.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a result
of this command:

Value Meaning
WFS_SRVE_CIM_TELLERINFOCHANGED Teller information has been created, modified or

deleted.

Comments None.

5.9 WFS_CMD_CIM_SET_CASH_UNIT_INFO

Description This command is used to adjust information about the status and contents of the cash units present in
the CIM.

This command generates the service event WFS_SRVE_CIM_CASHUNITINFOCHANGED to
inform applications that cash unit information has been changed.

This command can only be used to change software counters, thresholds and the application lock. All
other fields in the input structure will be ignored.

The following fields of the WFSCIMCASHIN structure may be updated by this command:
ulCount
ulCashInCount
ulMaximum
bAppLock

As may the following fields of the WFSCIMPHCU structure:
ulCashInCount
ulCount

Any other changes must be performed via an exchange operation.

If the fields ulCount and ulCashInCount of lppPhysical are set to 0 by this command, the application
is indicating that it does not wish counts to be maintained for the physical cash units. Counts on the
logical cash units will still be maintained and can be used by the application. If the physical counts are
set by this command then the logical count will be the sum of the physical counts and any value sent
as a logical count will be ignored.

Input Param LPWFSCIMCASHININFO lpCUInfo;
The LPWFSCIMCASHININFO structure is specified in the documentation of the
WFS_INF_CIM_CASH_UNIT_INFO command. All cash units must be included not just the cash
units whose values are to be changed.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_CIM_INVALIDTELLERID Invalid Teller ID.
WFS_ERR_CIM_INVALIDCASHUNIT Invalid cash unit ID.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state.

CWA 14050-15:2003 (E)

34

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a result
of this command:

Value Meaning
WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has been reached in

one of the cash units.
WFS_SRVE_CIM_CASHUNITINFOCHANGED A cash unit was updated as a result of this

command.
Comments None.

5.10 WFS_CMD_CIM_START_EXCHANGE

Description This command puts the CIM in an exchange state, i.e. a state in which cash units can be emptied,
replenished, removed or replaced. Other than the updates which can be made via the
WFS_CMD_CIM_SET_CASH_UNIT_INFO command all changes to a cash unit must take place
while the cash unit is in an exchange state.

In the case of self-configuring cash units which are designed to be replaced with no operator
intervention the application should use some trigger to initiate an exchange state when appropriate.
For instance, the WFS_SRVE_SAFE_DOOR_OPEN event could trigger the application to call
WFS_CMD_CIM_START_EXCHANGE.

The command returns current cash unit information in the form described in the documentation of the
WFS_INF_CIM_CASH_UNIT_INFO command. This command will also initiate any physical
processes which may be necessary to make the cash units accessible. Before using this command an
application should first have obtained exclusive control of the CIM.

This command may return WFS_SUCCESS even if WFS_EXEE_CIM CASHUNITERROR events
are generated. If this command returns WFS_SUCCESS or
WFS_ERR_CIM_EXCHANGE_ACTIVE the CIM is in an exchange state.

Once in an exchange state the CIM will only respond to the following commands:

• WFS_CMD_CIM_END_EXCHANGE
• Any WFS[Async]GetInfo commands
• WFSClose - This will end the exchange state.

Any other commands will result in the error WFS_ERR_CIM_EXCHANGEACTIVE being generated

If an error is returned by this command, the WFS_INF_CIM_CASH_UNIT_INFO command should
be used to determine the cash unit information.

If the CIM is part of a compound device together with a CDM (i.e. a cash recycler), exchange
operations must be performed separately on each part of the compound device. These operations
cannot be performed simultaneously. An exchange state must therefore be initiated on each interface
in the following sequence:

CDM
(Lock)
WFS_CMD_CDM_START_EXCHANGE
…exchange action…
WFS_CMD_CDM_END_EXCHANGE
(Unlock)

CIM
(Lock)
WFS_CMD_CIM_START_EXCHANGE
…exchange action…
WFS_CMD_CIM_END_EXCHANGE
(Unlock)

In the case of a recycler, the cash-in cash unit counts are set via the CIM interface and the cash-out
cash unit counts are set via the CDM interface. Recycling cash units can be set via either interface.
However, if the device has recycle units of multiple currencies and/or denominations, then the CIM
interface should be used for exchange operations involving these cash units.

CWA 14050-15:2003 (E)

35

Input Param LPWFSCIMSTARTEX lpStartEx;

typedef struct _wfs_cim_start_ex
{

WORD fwExchangeType;
USHORT usTellerID;
USHORT usCount;
LPUSHORT lpusCUNumList;
LPWFSCIMOUTPUT lpOutput;

} WFSCIMSTARTEX, * LPWFSCIMSTARTEX;

fwExchangeType
Specifies the type of the cash unit exchange operation. This field should be set to one of the
following values:
Value Meaning
WFS_CIM_EXBYHAND The cash units will be replenished manually either by filling

or emptying the cash unit by hand or by replacing the cash
unit.

WFS_CIM_EXTOCASSETTES Items will be moved from the replenishment container to
the bill cash units.

WFS_CIM_CLEARRECYCLER Items will be moved from a recycle cash unit to a cash unit
or output position.

WFS_CIM_DEPOSITINTO Items will be moved from the deposit entrance to the bill
cash units.

usTellerID
Identification of teller. If the device is a Self-Service CIM this field is ignored.

usCount
Number of cash units to be exchanged. This is also the size of the array contained in the
lpusCUNumList field.

lpusCUNumList
Pointer to an array of unsigned shorts containing the logical numbers of the cash units to be
exchanged.

lpOutput
This parameter is used when the exchange type is WFS_CIM_CLEARRECYCLER, i.e. a recycle
cash unit is to be emptied.

typedef struct _wfs_cim_output
{
USHORT usLogicalNumber;
WORD fwPosition;
USHORT usNumber;
} WFSCIMOUTPUT, * LPWFSCIMOUTPUT;

usLogicalNumber
Logical number of recycle unit be emptied.

fwPosition
Determines to which position the cash should be moved as a combination of the following flags:
Value Meaning
WFS_CIM_POSNULL Move items to a cash unit. If no cash unit is specified

in usNumber, use the default output position.
WFS_CIM_POSOUTLEFT Move items to the left output position.
WFS_CIM_POSOUTRIGHT Move items to the right output position.
WFS_CIM_POSOUTCENTER Move items to the center output position.
WFS_CIM_POSOUTTOP Move items to the top output position.
WFS_CIM_POSOUTBOTTOM Move items to the bottom output position.
WFS_CIM_POSOUTFRONT Move items to the front output position.
WFS_CIM_POSOUTREAR Move items to the rear output position.

usNumber
Logical number of the cash unit the items are to be moved to.

CWA 14050-15:2003 (E)

36

Output Param LPWFSCIMCASHINFO lpCUInfo;
The LPWFSCIMCASHINFO structure is specified in the documentation of the
WFS_INF_CIM_CASH_UNIT_INFO command. Information on all the CIM cash units will be
returned.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_CIM_INVALIDTELLERID Invalid Teller ID. This error will never be generated

by a Self-Service CIM.
WFS_ERR_CIM_CASHUNITERROR An error occurred with a cash unit while performing

the exchange operation. A
WFS_EXEE_CIM_CASHUNITERROR event will
be sent with the details.

WFS_ERR_CIM_TOOMANYITEMS This error is generated if the contents of the recycler
cash unit can not be completely emptied to the
output position. The maximum possible number of
items is moved to the output position.

WFS_ERR_CIM_EXCHANGEACTIVE The CIM is already in an exchange state.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command.

Value Meaning
WFS_EXEE_CIM_CASHUNITERROR An error occurred while performing the

exchange operation.
WFS_EXEE_CIM_NOTEERROR A notes detection error has occurred.

Comments None.

5.11 WFS_CMD_CIM_END_EXCHANGE

Description This command will end the exchange state. If any physical action took place as a result of the
WFS_CMD_CIM_START_EXCHANGE command then this command will cause the cash units to
be returned to their normal physical state. Any necessary device testing will also be initiated. The
application can also use this command to update cash unit information in the form described in the
documentation of the WFS_INF_CIM_CASH_UNIT_INFO command.

The input parameters to this command may be ignored if the service provider can obtain cash unit
information from self-configuring cash units.

If the fields ulCount, and ulCashInCount of lppPhysical are set to 0 by this command, the application
is indicating that it does not wish counts to be maintained for the physical cash units. Counts on the
logical cash units will still be maintained and can be used by the application. If the physical counts are
set by this command then the logical count will be the sum of the physical counts and any value sent
as a logical count will be ignored.

If an error occurs during the execution of this command, then the application must issue a
WFS_INF_CIM_CASH_UNIT_INFO to determine the cash unit information.

Even if this command does not return WFS_SUCCESS the exchange state has ended.

Input Param LPWFSCIMCASHININFO lpCUInfo;
The LPWFSCIMCASHININFO structure is specified in the documentation for the
WFS_INF_CIM_CASH_UNIT_INFO command. This pointer can be NULL, if the cash unit
information has not changed. Otherwise the parameter must contain the complete list of cash unit
structures not just the ones that have changed.

Output Param None.

CWA 14050-15:2003 (E)

37

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_CIM_INVALIDTELLERID Invalid Teller ID.
WFS_ERR_CIM_CASHUNITERROR This error is returned if there is a problem with the

values set for a cash unit. A
WFS_EXEE_CIM_CASHUNITERROR event will
be sent with the details.

WFS_ERR_CIM_NOEXCHANGEACTIVE There is no exchange active.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has been reached in one

of the cash units.
WFS_SRVE_CIM_CASHUNITINFOCHANGED A cash unit was changed.
WFS_EXEE_CIM_CASHUNITERROR The values of the cash unit structures are

incorrect. The cash unit structure that is
incorrect is returned as a parameter on this
event.

Comments None.

5.12 WFS_CMD_CIM_OPEN_SAFE_DOOR

Description This command unlocks the safe door or starts the time delay count down prior to unlocking the safe
door, if the device supports it. The command completes when the door is unlocked or the timer has
started.

Input Param None.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

5.13 WFS_CMD_CIM_RESET

Description This command is used by the application to perform a hardware reset which will attempt to return the
CIM device to a known good state. This command does not over-ride a lock obtained on another
application or service handle nor can it be performed while the CIM is in the exchange state. This
command does not end a cash in transaction, the CIM remains in the cash in state.

Persistent values, such as counts and configuration information are not cleared by this command.

The device will attempt to move any items found to the cash unit or output position specified in the
lpResetIn parameter. This may not always be possible because of hardware problems.

If items are found inside the device the WFS_SRVE_CIM_MEDIADETECTED event will be
generated to inform the application where the items have actually been moved to.

CWA 14050-15:2003 (E)

38

Input Param LPWFSCIMITEMPOSITION lpResetIn;

typedef struct _wfs_cim_itemposition
{

USHORT usNumber;
LPWFSCIMRETRACT lpRetractArea;
WORD fwOutputPosition;

} WFSCIMITEMPOSITION * LPWFSCIMITEMPOSITION;

usNumber
The usNumber of the cash unit to which items which were inside the CIM when the reset was issued
should be moved. If the items should be moved to an output position this value is 0.

lpRetractArea
This field is only used if the cash unit specified by usNumber is a retract cash unit. In all other cases
this field is set to 0. For a description of this structure see the WFSCIMRETRACT structure defined
in WFS_CMD_CIM_RETRACT.

fwOutputPosition
The output position to which items are to be moved. If the usNumber is non-zero then this field will
be 0. The value is set to one of the following values:

Value Meaning
WFS_CIM_POSNULL Take the default configuration.
WFS_CIM_POSOUTLEFT Move items to the left output position.
WFS_CIM_POSOUTRIGHT Move items to the right output position.
WFS_CIM_POSOUTCENTER Move items to the center output position.
WFS_CIM_POSOUTTOP Move items to the top output position.
WFS_CIM_POSOUTBOTTOM Move items to the bottom output position.
WFS_CIM_POSOUTFRONT Move items to the front output position.
WFS_CIM_POSOUTREAR Move items to the rear output position.

If the application does not wish to specify a cash unit or position it can set this value to NULL. In this
case the service provider will determine where to move any items found.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1] the following can be generated by this
command.

Value Meaning
WFS_ERR_CIM_CASHUNITERROR A cash unit caused an error. A

WFS_EXEE_CIM_CASHUNITERROR event will
be sent with the details.

WFS_ERR_CIM_UNSUPPOSITION The position specified is not supported.
WFS_ERR_CIM_INVALIDCASHUNIT The cash unit number specified is not valid.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in the exchange state.
WFS_ERR_CIM_CASHINACTIVE A Cash-In transaction is active.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has been reached in one

of the cash units.
WFS_EXEE_CIM_CASUNITERROR A cash unit caused an error.
WFS_SRVE_CIM_MEDIADETECTED Media was detected during the reset.

Comments None.

5.14 WFS_CMD_CIM_CONFIGURE_CASH_IN_UNITS

Description This command is used to alter the banknote types a cash in unit or recycle unit can take. The cash
units which are affected by this command must be empty.

The values set by this command are persistent.

CWA 14050-15:2003 (E)

39

Input Param LPWFSCIMCASHINTYPE * lppCashInType;

Pointer to a NULL terminated array of pointers to cash in type structures. Only the cash units which
are to be configured should be sent in this parameter:

typedef struct _wfs_cim_cash_in_type
{

USHORT usNumber;
DWORD dwType;
LPUSHORT lpusNoteIDs;

} WFSCIMCASHINTYPE, * LPWFSCIMCASHINTYPE;

usNumber
Logical number of the cash unit.

dwType
Type of cash in unit or recycle unit. Specified as a combination of the following flags:
Value Meaning
WFS_CIM_CITYPALL The cash in unit accepts all banknote types.
WFS_CIM_CITYPUNFIT The cash in unit accepts all unfit banknotes.
WFS_CIM_CITYPINDIVIDUAL The cash in unit or recycle unit accepts all types of bank

notes specified in the following list.
WFS_CIM_CITYPLEVEL2 Paragraph 6 level 2 notes are stored in this cash in unit
WFS_CIM_CITYPLEVEL3 Paragraph 6 level 3 notes are stored in this cash in unit

lpusNoteIDs
Pointer to a NULL terminated list of unsigned shorts which contains the note IDs of the bank notes
the cash in cash unit or recycle unit can take.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_CIM_INVALIDCASHUNIT Invalid cash unit ID. This error will also be created

if an invalid logical number of a cash unit is given.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM service is in an exchange state.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_CIM_CASHUNITINFOCHANGED A cash unit was changed.

Comments None.

5.15 WFS_CMD_CIM_CONFIGURE_NOTETYPES

Description This command is used to configure the note types the banknote reader will recognise during cash in.
All note types the banknote reader has to recognise must be given in the input structure. If an
unknown note type is given the error code WFS_ERR_UNSUPPORTED_DATA will be returned.

The values set by this command are persistent.

Input Param LPUSHORT lpusNoteIDs;

lpusNoteIDs
Pointer to a NULL terminated list of unsigned shorts which contains the note IDs of the bank notes
the banknote reader can accept.

Output Param None.

CWA 14050-15:2003 (E)

40

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

5.16 WFS_CMD_CIM_CREATE_P6_SIGNATURE

Description This command is used to create a reference signature (normally a level 3 note) that was checked and
regarded as a forgery. The reference can be compared with the available signatures of the cash in
transactions to track back the customer.

When this command is executed, the CIM waits for a note to be inserted at the input position,
transports the note to the recognition module, creates the signature and then returns the note to the
output position.
The application may have to execute this command repeatedly to make sure that all possible
signatures are captured. If no recognition software is loaded into the recognition module usNoteId
will be zero. If the note is not transported to the recognition module (e.g. bad transport out of input
position) a NULL pointer is returned.

Input Param None.

Output Param LPWFSCIMP6SIGNATURE lpP6Signature;

typedef struct _wfs_cim_P6_signature
{

USHORT usNoteId;
ULONG ulLength;
DWORD dwOrientation;
LPVOID lpSignature;

} WFSCIMP6SIGNATURE, *LPWFSCIMP6SIGNATURE;

usNoteID
Identification of note type.

ulLength
Length of the signature in byte.

dwOrientation
Orientation of the entered banknote. Specified as one of the following flags:
Value Meaning
WFS_CIM_ORFRONTTOP If note is inserted wide side as the leading edge, the note

was inserted with the front image facing up and the top
edge of the note was inserted first. If the note is inserted
short side as the leading edge, the note was inserted with
the front image face up and the left edge was inserted
first.

WFS_CIM_ORFRONTBOTTOM If note is inserted wide side as the leading edge, the note
was inserted with the front image facing up and the
bottom edge of the note was inserted first. If the note is
inserted short side as the leading edge, the note was
inserted with the front image face up and the right edge
was inserted first.

WFS_CIM_ORBACKTOP If note is inserted wide side as the leading edge, the note
was inserted with the back image facing up and the top
edge of the note was inserted first. If the note is inserted
short side as the leading edge, the note was inserted with
the back image face up and the left edge was inserted
first.

CWA 14050-15:2003 (E)

41

WFS_CIM_ORBACKBOTTOM If note is inserted wide side as the leading edge, the note
was inserted with the back image facing up and the
bottom edge of the note was inserted first. If the note is
inserted short side as the leading edge, the note was
inserted with the back image face up and the right edge
was inserted first.

WFS_CIM_ORUNKNOWN The orientation for the inserted note can not be
determined

WFS_CIM_ORNOTSUPPORTED The hardware is not capable to determine the orientation

lpSignature
Pointer to the returned signature.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_CIM_TOOMANYITEMS There was more than one banknote inserted for

creating a signature.
WFS_ERR_CIM_NOITEMS There was no banknote to create a signature.
WFS_ERR_CIM_CASHINACTIVE A Cash-In transaction is active.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_CIM_INPUTREFUSE The inserted item was no banknote or the note was not

recognised.
WFS_SRVE_CIM_ITEMSINSERTED Items have been inserted into the cash in position by

the user.
WFS_SRVE_CIM_ITEMSTAKEN Items returned to the user have been taken.
WFS_SRVE_CIM_ITEMSPRESENTED Items have been presented to the user to be taken.

Comments None.

CWA 14050-15:2003 (E)

42

6. Events

6.1 WFS_SRVE_CIM_SAFEDOOROPEN

Description This service event specifies that the safe door has been opened.

Event Param None.

Comments None.

6.2 WFS_SRVE_CIM_SAFEDOORCLOSED

Description This service event specifies that the safe door has been closed.

Event Param None.

Comments None.

6.3 WFS_USRE_CIM_CASHUNITTHRESHOLD

Description This user event specifies that a threshold condition has occurred in one of the cash units.

Event Param LPWFSCIMCASHIN lpCashUnit;

lpCashUnit
Pointer to WFSCIMCASHIN structure, describing the cash unit on which the threshold condition
occurred. See lpCashUnit->usStatus for the type of condition. For a description of the
WFSCIMCASHIN structure, see the definition of the WFS_INF_CIM_CASH_UNIT_INFO
command.

Comments None.

6.4 WFS_SRVE_CIM_CASHUNITINFOCHANGED

Description This service event specifies that a cash unit has changed in configuration. A physical cash unit may
have been removed or inserted or a cash unit parameter may have changed. This event will also be
posted on successful completion of the following commands:

WFS_CMD_CIM_SET_CASH_UNIT_INFO
WFS_CMD_CIM_END_EXCHANGE

Event Param LPWFSCIMCASHIN lpCashUnit;

lpCashUnit
Pointer to the changed cash unit structure. For a description of the WFSCIMCASHIN structure see
the definition of the WFS_INF_CIM_CASH_UNIT_INFO command.

Comments None.

6.5 WFS_SRVE_CIM_TELLERINFOCHANGED

Description This service event specifies that the counts assigned to the specified teller have been changed. This
event is only returned as a result of a WFS_CMD_CIM_SET_TELLER_INFO command.

Event Param LPUSHORT lpusTellerID;

lpusTellerID
Pointer to an unsigned short holding the ID of the teller whose counts have been changed.

Comments None.

CWA 14050-15:2003 (E)

43

6.6 WFS_EXEE_CIM_CASHUNITERROR

Description This execute event specifies that in a denominate or dispense command a cash unit was addressed
which caused a problem.

Event Param LPWFSCIMCUERROR lpCashUnitError;

typedef struct _wfs_cim_cu_error
{

WORD wFailure;
LPWFSCIMCASHIN lpCashUnit;

} WFSCIMCUERROR, * LPWFSCIMCUERROR;

wFailure
Specifies the kind of failure that occurred in the cash unit. Values are:

Value Meaning
WFS_CIM_CASHUNITEMPTY Specified cash unit is empty.
WFS_CIM_CASHUNITERROR Specified cash unit has malfunctioned.
WFS_CIM_CASHUNITFULL Specified cash unit is full.
WFS_CIM_CASHUNITLOCKED Specified cash unit is locked.
WFS_CIM_CASHUNITNOTCONF Specified cash unit is not configured due to being

removed and/or replaced with a different cash unit.
WFS_CIM_CASHUNITINVALID Specified cash unit ID is invalid.
WFS_CIM_CASHUNITCONFIG Attempt to change the setting of a self-configuring

cash unit.
WFS_CIM_FEEDMODULEPROBLEM A problem has been detected with the feeding module.

lpCashUnit
Pointer to the cash unit structure that caused the problem. For a description of the
WFSCIMCASHIN structure see the definition of the WFS_INF_CIM_CASH_UNIT_INFO
command.

Comments None.

6.7 WFS_SRVE_CIM_ITEMSTAKEN

Description This service event specifies that items presented to the user have been taken.

Event Param None.

Comments None.

6.8 WFS_SRVE_CIM_COUNTS_CHANGED

Description This service event is generated if the device is a compound device together with a CDM and the
counts in a shared cash unit have changed as a result of a CDM operation.

Event Param LPWFSCIMCOUNTSCHANGED lpCountsChanged;

typedef struct _wfs_cim_counts_changed
{

USHORT usCount;
USHORT * lpusCUNumList;

} WFSCIMCOUNTSCHANGED, *LPWFSCIMCOUNTSCHANGED;

usCount
The size of lpusCUNumList.

lpusCUNumList
A list of the usNumbers of the cash units whose counts have changed.

Comments None.

CWA 14050-15:2003 (E)

44

6.9 WFS_EXEE_CIM_INPUTREFUSE

Description This execute event specifies that the device has refused either a portion or the entire amount of the
cash in order.

Event Param LPUSHORT lpusReason;

lpusReason
Specifies the reason for refusing a part of the amount. Possible values are:
Value Meaning
WFS_CIM_CASHINUNITFULL Cash unit is full.
WFS_CIM_INVALIDBILL One or more of the items are invalid.
WFS_CIM_NOBILLSTODEPOSIT There are no bills in the input area.
WFS_CIM_DEPOSITFAILURE A deposit has failed for a reason other than one of the

reasons above, and the failure is not a fatal hardware
problem.

WFS_CIM_COMMINPCOMPFAILURE Failure of a common input component which is shared
by all cash units.

WFS_CIM_STACKERFULL The intermediate stacker is full.

Comments None.

6.10 WFS_SRVE_CIM_ITEMSPRESENTED

Description This service event specifies that items have been presented to the user and need to be taken.

Event Param None.

Comments None.

6.11 WFS_SRVE_CIM_ITEMSINSERTED

Description This service event specifies that items have been inserted into the cash in position by the user.

Event Param None.

Comments None.

6.12 WFS_EXEE_CIM_NOTEERROR

Description This execute event specifies the reason for a notes detection error during an operation which involves
moving notes.

Event Param LPUSHORT lpusReason;

lpusReason
Specifies the reason for the notes detection error. Possible values are:

Value Meaning
WFS_CIM_DOUBLENOTEDETECTED Double notes have been detected.
WFS_CIM_LONGNOTEDETECTED A long note has been detected.
WFS_CIM_SKEWEDNOTE A skewed note has been detected.
WFS_CIM_INCORRECTCOUNT A bill counting error has occurred.
WFS_CIM_NOTESTOOCLOSE Notes have been detected as being too close.

Comments None.

CWA 14050-15:2003 (E)

45

6.13 WFS_EXEE_CIM_SUBCASHIN

Description This execute event is generated when one of the sub-cash-in operations into which the cash in
operation was divided has finished successfully.

Event Param LPWFSCIMNOTENUMBERLIST lpNoteNumberList;

lpNoteNumberList
List of banknote numbers which have been identified and accepted during execution of the sub-
cash-in. This parameter will contain the banknote numbers of the accepted items. For a description
of the LPWFSCIMNOTENUMBERLIST structure see the WFS_INF_CIM_CASH_UNIT_INFO
command.

Comments None.

6.14 WFS_SRVE_CIM_MEDIADETECTED

Description This service event is generated if media is detected during a reset (WFS_CMD_CIM_RESET). The
parameter on the event specifies the position of the media on completion of the reset. If the device has
been unable to successfully move the items found then this parameter will be NULL.

Event Param LPWFSCIMITEMPOSITION lpPosition;
For a description of this parameter see WFS_CMD_CIM_RESET (section 5.13).

Comments None.

6.15 WFS_EXEE_CIM_INPUT_P6:

Description This execute event is generated if level 2 and / or level 3 notes are detected during the cash in
operation. (WFS_CMD_CIM_CASH_IN).

Event Param LPWFSCIMP6INFO *lppP6Info
Pointer to a null terminated array of pointers to p6Info structures. One structure for every level.

For the description of the structure see WFS_INF_CIM_GET_P6_INFO

Comments None.

CWA 14050-15:2003 (E)

46

7 ATM Cash In Transaction Flow – Application Guidelines

The following table describes the flow of a cash in transaction on a Self Service CIM:

7.1 OK Transaction
This section describes a normal cash in transaction where everything works fine.

Customer Application XFS Command
1. Select function

Cash-In
Open the shutter of the input tray WFS_CMD_CIM_CASH_IN_START

WFS_CMD_CIM_OPEN_SHUTTER
2. Ask the customer to insert money
3. WFS_CMD_CIM_CLOSE_SHUTTER

WFS_CMD_CIM_CASH_IN
(WFS_CIM_POSBILLINPUT)

4. Insert money WFS_SRVE_CIM_ITEMSINSERTED and
completion of WFS_CMD_CIM_CASH_IN

5. Display the amount recognized so
far

6. Ask the customer for further
actions:

If customer wants to insert more
money:
Repeat from 2.

If customer wants to finish the
transaction:
Continue with 7.

If customer wants to get back all
items inserted so far see table
“cancellation by customer“

7. Transport the money into the cash
units
(RECYCLE_UNIT/CASHINBOX)

WFS_CMD_CIM_CASH_IN_END

8. Credit the money to the customers
account

9. End of Transaction

7.2 Cancellation by Customer
This section describes how an application should react when the customer wants all the items to be returned after
recognition.

Customer Application XFS Command
1.-6. See OK

Transaction
7. Selection : Return

all the items
8. Transport the items recognized to

the output tray and ask for removal
of the money. And inform
customer that the P6 notes are
stored in the ATM.

WFS_CMD_CIM_CASH_IN_ROLLBACK with
output data in case of P6 notes detected
WFS_CMD_CIM_OPEN_SHUTTER

9. Take the money
from the output
tray

WFS_SRVE_CIM_ITEMSTAKEN

10. End of Transaction

CWA 14050-15:2003 (E)

47

7.3 Stacker becomes full
This section describes how an application should react when the stacker becomes full during the transaction.

Customer Application XFS Command
1.-3. See OK

Transaction
4. Insert money WFS_SRVE_CIM_ITEMSINSERTED and

completion of WFS_CMD_CIM_CASH_IN with t
error code WFS_ERR_CIM_TOOMANYITEMS.

5. Display the amount recognized so
far and tell the customer that the
stacker is full

6. Ask the customer for further
actions:

If customer wants to deposit the
amount:
Continue with 7.

If customer wants to get back all
items inserted so far see table
“cancellation by customer“

7. Transport the money into the cash
units
(RECYCLE_UNIT/CASHINBOX)

WFS_CMD_CIM_CASH_IN_END

8. Ask the customer if customer
wants to deposit more money.

If customer wants to deposit more:
Repeat from 1.

If customer wants to finish the
transaction:
Continue with 9.

9. Credit the money to the customers
account

10. End of Transaction

CWA 14050-15:2003 (E)

48

7.4 Bill recognition error

This section describes what an application should do when some of the items could not be recognized (e.g. torn or dirty
items) and what sort of interactions with the customer is necessary to complete the transaction.
Please notice that it is only possible to transport the recognized money into the cash in units when the output and the
input slot is empty.
So long as the command WFS_CMD_CIM_CASH_IN_END was not issued, the money can be returned to the customer
by issuing a WFS_CMD_CIM_CASH_IN_ROLLBACK command. Later returning the money is not longer possible,
because it is transported from the stacker to the cash units from where it cannot be taken.

Customer Application XFS Command
1.-3. See OK

Transaction
4. Insert money WFS_SRVE_CIM_ITEMSINSERTED
5. WFS_EXEE_CIM_INPUTREFUSE

Some of the items could not be recognized (They
are moved to the output tray) and completion of
WFS_CMD_CIM_CASH_IN

6. WFS_CMD_CIM_OPEN_SHUTTER
7. Tell the customer that the bills

were not recognized and that
customer should take the bills.

8. Take the money
from the output
tray

WFS_SRVE_CIM_ITEMSTAKEN

9. Ask the customer for further
actions:

If customer wants to insert more
money:
Repeat from 2.

If customer wants to finish the
transaction:
Continue with 10.

If customer wants to get back all
items inserted so far see table
“cancellation by customer“

10. Credit the money to the customers
account

11. End of Transaction

CWA 14050-15:2003 (E)

49

7.5 Implicit Control Of the Shutter by the Service Provider – OK Transaction

The following table describes the chronological steps taken in the flow of a Cash In transaction where the Shutter is
implicitly controlled by the Service Provider. In this case the WFS_CMD_CIM_OPEN_SHUTTER and
WFS_CMD_CIM_CLOSE_SHUTTER commands are not used:

Customer Application XFS Command
1. Customer selects

Cash In operation.
2. WFS_CMD_CIM_CASH_IN_START

command issued.
3. The service provider opens the input shutter, then t

WFS_CMD_CIM_CASH_IN_START command
completes.

4. Ask customer to insert money into
the input shutter then confirm.

5. Customer inserts
money then
confirms.

6. WFS_CMD_CIM_CASH_IN command issued.
7. The service provider closes the input shutter then

begins bill recognition.
If any bills are not recognized a
WFS_EXEE_CIM_INPUT_REFUSED event is
posted. The unrecognized notes are returned to
the output position and the output shutter is
opened.
The service provider opens the input shutter on
completion for another Cash In operation.

8. The WFS_CMD_CIM_CASH_IN command
completes.

9. Display number of bills and/or
amount recognized and whether
any bills were refused. Ask
customer if another Cash In
operation is required.

10. If customer selects
another Cash In
operation then go
to step 4.
If customer selects
end of Cash In
Transaction go to
step 11.

11. WFS_CMD_CIM_CASH_IN_END command
issued.

12. Service Provider closes the input shutter and if
necessary the output shutter.

13. WFS_CMD_CIM_CASH_IN_END command
completes.

14. End of transaction.

CWA 14050-15:2003 (E)

50

7.6 Implicit Control Of the Shutter by the Service Provider – RollBack

The following table describes the chronological steps taken in the flow of a Cash In transaction which terminates with a
RollBack command. The Shutter is implicitly controlled by the Service Provider. In this case the
WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands are not used:

Customer Application XFS Command
1.-9. See OK

Transaction
10. Customer selects

Cancel.
11. WFS_CMD_CIM_CASH_IN_ROLLBACK

command issued. The Service Provider closes the
input shutter and if necessary the output shutter. Al
notes cashed in since the last
WFS_CMD_CIM_CASH_IN_START operation a
returned to the customer then the Shutter is opened
again to display the bills to the customer.

12. WFS_CMD_CIM_CASH_IN_ROLLBACK
command completes.

13. Customer takes
bills.

14. WFS_SRVE_CIM_ITEMSTAKEN event is sent. T
Service Provider closes the Shutter.

15. End of transaction.

CWA 14050-15:2003 (E)

51

7.7 Implicit Control Of the Shutter– WFS_EXEE_CIM_SUBCASHIN event

The following table describes the chronological steps taken in the flow of a Cash In transaction where the Cash In
operation is subdivided into a number of logical operations under hardware control, in this case a
WFS_EXEE_CIM_SUBCASHIN event is generated for each sub Cash In operation. This may be the case for instance
where a device does its coin or bill recognition in batches of 25, in this case the Service Provider would post a
WFS_EXEE_CIM_SUBCASHIN event each time 25 coins were processed. In this example the shutter is implicitly
controlled by the Service Provider. In this case the WFS_CMD_CIM_OPEN_SHUTTER and
WFS_CMD_CIM_CLOSE_SHUTTER commands are not used:

Customer Application XFS Command
1.-6. See OK

Transaction
7. The service provider closes the input shutter then

begins bill or coin recognition.

The device processes the bills or coins in
batches. Each time a batch is completed a
WFS_EXEE_CIM_SUBCASHIN event is posted
then the Cash In operation continues.

The service provider opens the input shutter on
completion for another Cash In operation.

8. The WFS_CMD_CIM_CASH_IN command
completes.

9. Display number of bills and/or
amount recognized and whether
any bills were refused. Ask
customer if another Cash In
operation is required, if so then go
to step 4, otherwise proceed to step
10.

10. WFS_CMD_CIM_CASH_IN_END command
issued.

11. Service Provider closes the input shutter and if
necessary the output shutter.

12. WFS_CMD_CIM_CASH_IN_END command
completes.

13. End of transaction.

CWA 14050-15:2003 (E)

52

7.8 OK Transaction P6
This section describes a possible cash in transaction with P6 where everything works fine and level2 /level 3 notes are
inserted.

Customer Application XFS Command
1. Select function

Cash-In
Open the shutter of the input tray WFS_CMD_CIM_CASH_IN_START

WFS_CMD_CIM_OPEN_SHUTTER
2. Ask the customer to insert money
3. WFS_CMD_CIM_CLOSE_SHUTTER

WFS_CMD_CIM_CASH_IN
(WFS_CIM_POSBILLINPUT)

4. Insert money WFS_SRVE_CIM_ITEMSINSERTED,
WFS_EXE_CIM_INPUTP6 and completion of
WFS_CMD_CIM_CASH_IN

5 Get number of P6 notes WFS_INF_CIM_GET_P6_INFO
6. Display the amount recognized so

far and inform customer that P6
notes are inserted

7 Store signatures of P6 notes with
customer data.

Call WFS_INF_CIM_GET_P6_SIGNATURE
once for every signature.

8. Ask the customer for further
actions:

If customer wants to insert more
money:
Repeat from 2.

If customer wants to finish the
transaction:
Continue with 9.

If customer wants to get back all
items inserted so far see table
“cancellation by customer“

9. Transport the money into the cash
units.
(RECYCLE_UNIT/CASHINBOX)

WFS_CMD_CIM_CASH_IN_END

10. At this point the application should
decide how to credit the
appropriate money to the
customers account, and inform the
customer about the amounts of
level 2 and 3 notes.

11 End of Transaction

CWA 14050-15:2003 (E)

53

8. Rules for Cash Unit Exchange

The XFS Start and End Exchange commands should be used by applications to supply the latest information with
regards to cash unit replenishment state and content. This guarantees a certain amount of control to an application as to
which denominations are stored in which position as well as the general physical state of the logical/physical cash units.

If a cash unit is removed from the CIM outside of the Start/End Exchange operations the status of the physical cash unit
should be set to WFS_CIM_STATCUMANIP to indicate to the application that the physical cash unit has been
removed and possibly tampered with. While the cash unit has this status the Service Provider should not attempt to use
it as part of a Dispense operation. The WFS_CIM_STATCUMANIP status should not change until the next Start/End
Exchange operation is performed, even if the cash unit is replaced in its original position.
If all the physical cash units belonging to a logical cash unit are manipulated the parent logical cash unit that the
physical cash units belong to should also have its status set to WFS_CIM_STATCUMANIP.

When a cash unit is removed and/or replaced outside of the Start/End Exchange operations the original logical cash unit
information such as the values, currency and counts should be preserved in the Cash Unit Info structure reported to the
application for accounting purposes until the next Start/End Exchange operations, even if the cash unit physically
contains a different denomination.

CWA 14050-15:2003 (E)

54

9. C - Header file

/**
* *
* xfscim.h XFS - Cash Acceptor (CIM) definitions *
* *
* Version 3.02 (09/05/03) *
* *
**/

#ifndef __INC_XFSCIM__H
#define __INC_XFSCIM__H

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack (push, 1)

/* values of WFSCIMCAPS.wClass */

#define WFS_SERVICE_CLASS_CIM (13)
#define WFS_SERVICE_CLASS_VERSION_CIM 0x0203
#define WFS_SERVICE_CLASS_NAME_CIM "CIM"

#define CIM_SERVICE_OFFSET (WFS_SERVICE_CLASS_CIM * 100)

/* CIM Info Commands */

#define WFS_INF_CIM_STATUS (CIM_SERVICE_OFFSET + 1)
#define WFS_INF_CIM_CAPABILITIES (CIM_SERVICE_OFFSET + 2)
#define WFS_INF_CIM_CASH_UNIT_INFO (CIM_SERVICE_OFFSET + 3)
#define WFS_INF_CIM_TELLER_INFO (CIM_SERVICE_OFFSET + 4)
#define WFS_INF_CIM_CURRENCY_EXP (CIM_SERVICE_OFFSET + 5)
#define WFS_INF_CIM_BANKNOTE_TYPES (CIM_SERVICE_OFFSET + 6)
#define WFS_INF_CIM_CASH_IN_STATUS (CIM_SERVICE_OFFSET + 7)
#define WFS_INF_CIM_GET_P6_INFO (CIM_SERVICE_OFFSET + 8)
#define WFS_INF_CIM_GET_P6_SIGNATURE (CIM_SERVICE_OFFSET + 9)

/* CIM Execute Commands */

#define WFS_CMD_CIM_CASH_IN_START (CIM_SERVICE_OFFSET + 1)
#define WFS_CMD_CIM_CASH_IN (CIM_SERVICE_OFFSET + 2)
#define WFS_CMD_CIM_CASH_IN_END (CIM_SERVICE_OFFSET + 3)
#define WFS_CMD_CIM_CASH_IN_ROLLBACK (CIM_SERVICE_OFFSET + 4)
#define WFS_CMD_CIM_RETRACT (CIM_SERVICE_OFFSET + 5)
#define WFS_CMD_CIM_OPEN_SHUTTER (CIM_SERVICE_OFFSET + 6)
#define WFS_CMD_CIM_CLOSE_SHUTTER (CIM_SERVICE_OFFSET + 7)
#define WFS_CMD_CIM_SET_TELLER_INFO (CIM_SERVICE_OFFSET + 8)
#define WFS_CMD_CIM_SET_CASH_UNIT_INFO (CIM_SERVICE_OFFSET + 9)
#define WFS_CMD_CIM_START_EXCHANGE (CIM_SERVICE_OFFSET + 10)
#define WFS_CMD_CIM_END_EXCHANGE (CIM_SERVICE_OFFSET + 11)
#define WFS_CMD_CIM_OPEN_SAFE_DOOR (CIM_SERVICE_OFFSET + 12)
#define WFS_CMD_CIM_RESET (CIM_SERVICE_OFFSET + 13)
#define WFS_CMD_CIM_CONFIGURE_CASH_IN_UNITS (CIM_SERVICE_OFFSET + 14)
#define WFS_CMD_CIM_CONFIGURE_NOTETYPES (CIM_SERVICE_OFFSET + 15)
#define WFS_CMD_CIM_CREATE_P6_SIGNATURE (CIM_SERVICE_OFFSET + 16)

/* CIM Messages */

#define WFS_SRVE_CIM_SAFEDOOROPEN (CIM_SERVICE_OFFSET + 1)
#define WFS_SRVE_CIM_SAFEDOORCLOSED (CIM_SERVICE_OFFSET + 2)
#define WFS_USRE_CIM_CASHUNITTHRESHOLD (CIM_SERVICE_OFFSET + 3)
#define WFS_SRVE_CIM_CASHUNITINFOCHANGED (CIM_SERVICE_OFFSET + 4)
#define WFS_SRVE_CIM_TELLERINFOCHANGED (CIM_SERVICE_OFFSET + 5)

CWA 14050-15:2003 (E)

55

#define WFS_EXEE_CIM_CASHUNITERROR (CIM_SERVICE_OFFSET + 6)
#define WFS_SRVE_CIM_ITEMSTAKEN (CIM_SERVICE_OFFSET + 7)
#define WFS_SRVE_CIM_COUNTS_CHANGED (CIM_SERVICE_OFFSET + 8)
#define WFS_EXEE_CIM_INPUTREFUSE (CIM_SERVICE_OFFSET + 9)
#define WFS_SRVE_CIM_ITEMSPRESENTED (CIM_SERVICE_OFFSET + 10)
#define WFS_SRVE_CIM_ITEMSINSERTED (CIM_SERVICE_OFFSET + 11)
#define WFS_EXEE_CIM_NOTEERROR (CIM_SERVICE_OFFSET + 12)
#define WFS_EXEE_CIM_SUBCASHIN (CIM_SERVICE_OFFSET + 13)
#define WFS_SRVE_CIM_MEDIADETECTED (CIM_SERVICE_OFFSET + 14)
#define WFS_EXEE_CIM_INPUT_P6 (CIM_SERVICE_OFFSET + 15)

/* values of WFSCIMSTATUS.fwDevice */

#define WFS_CIM_DEVONLINE WFS_STAT_DEVONLINE
#define WFS_CIM_DEVOFFLINE WFS_STAT_DEVOFFLINE
#define WFS_CIM_DEVPOWEROFF WFS_STAT_DEVPOWEROFF
#define WFS_CIM_DEVNODEVICE WFS_STAT_DEVNODEVICE
#define WFS_CIM_DEVUSERERROR WFS_STAT_DEVUSERERROR
#define WFS_CIM_DEVHWERROR WFS_STAT_DEVHWERROR
#define WFS_CIM_DEVBUSY WFS_STAT_DEVBUSY

/* values of WFSCIMSTATUS.fwSafeDoor */

#define WFS_CIM_DOORNOTSUPPORTED (1)
#define WFS_CIM_DOOROPEN (2)
#define WFS_CIM_DOORCLOSED (3)
#define WFS_CIM_DOORUNKNOWN (4)

/* values of WFSCIMSTATUS.fwAcceptor */

#define WFS_CIM_ACCOK (0)
#define WFS_CIM_ACCCUSTATE (1)
#define WFS_CIM_ACCCUSTOP (2)
#define WFS_CIM_ACCCUUNKNOWN (3)

/* values of WFSCIMSTATUS.fwIntermediateStacker */

#define WFS_CIM_ISEMPTY (0)
#define WFS_CIM_ISNOTEMPTY (1)
#define WFS_CIM_ISFULL (2)
#define WFS_CIM_ISUNKNOWN (4)
#define WFS_CIM_ISNOTSUPPORTED (5)

/* values of WFSCIMSTATUS.fwStackerItems */

#define WFS_CIM_CUSTOMERACCESS (0)
#define WFS_CIM_NOCUSTOMERACCESS (1)
#define WFS_CIM_ACCESSUNKNOWN (2)
#define WFS_CIM_NOITEMS (4)

/* values of WFSCIMSTATUS.fwBankNoteReader */

#define WFS_CIM_BNROK (0)
#define WFS_CIM_BNRINOP (1)
#define WFS_CIM_BNRUNKNOWN (2)
#define WFS_CIM_BNRNOTSUPPORTED (3)

/* values of WFSCIMSTATUS.fwShutter */

#define WFS_CIM_SHTCLOSED (0)
#define WFS_CIM_SHTOPEN (1)
#define WFS_CIM_SHTJAMMED (2)
#define WFS_CIM_SHTUNKNOWN (3)
#define WFS_CIM_SHTNOTSUPPORTED (4)

/* values of WFSCIMINPOS.fwPositionStatus */

#define WFS_CIM_PSEMPTY (0)
#define WFS_CIM_PSNOTEMPTY (1)
#define WFS_CIM_PSUNKNOWN (2)
#define WFS_CIM_PSNOTSUPPORTED (3)

CWA 14050-15:2003 (E)

56

/* values of WFSCIMSTATUS.fwTransport */

#define WFS_CIM_TPOK (0)
#define WFS_CIM_TPINOP (1)
#define WFS_CIM_TPUNKNOWN (2)
#define WFS_CIM_TPNOTSUPPORTED (3)

/* values of WFSCIMINPOS.fwTransportStatus */

#define WFS_CIM_TPSTATEMPTY (0)
#define WFS_CIM_TPSTATNOTEMPTY (1)
#define WFS_CIM_TPSTATNOTEMPTYCUST (2)
#define WFS_CIM_TPSTATNOTEMPTY_UNK (3)
#define WFS_CIM_TPSTATNOTSUPPORTED (4)

/* values of WFSCIMCAPS.fwType */

#define WFS_CIM_TELLERBILL (0)
#define WFS_CIM_SELFSERVICEBILL (1)
#define WFS_CIM_TELLERCOIN (2)
#define WFS_CIM_SELFSERVICECOIN (3)

/* values of WFSCIMCAPS.fwExchangeType */
/* values of WFSCIMSTARTEX.fwExchangeType */

#define WFS_CIM_EXBYHAND (0x0001)
#define WFS_CIM_EXTOCASSETTES (0x0002)
#define WFS_CIM_CLEARRECYCLER (0x0004)
#define WFS_CIM_DEPOSITINTO (0x0008)

/* values of WFSCIMCAPS.fwRetractTransportActions */
/* values of WFSCIMCAPS.fwRetractStackerActions */

#define WFS_CIM_PRESENT (0x0001)
#define WFS_CIM_RETRACT (0x0002)
#define WFS_CIM_NOTSUPP (0x0004)

/* values of WFSCIMCASHIN.fwType */

#define WFS_CIM_TYPERECYCLING (1)
#define WFS_CIM_TYPECASHIN (2)
#define WFS_CIM_TYPEREPCONTAINER (3)
#define WFS_CIM_TYPERETRACTCASSETTE (4)

/* values of WFSCIMCASHIN.fwItemType */
/* values of WFSCIMCASHINTYPE.dwType */

#define WFS_CIM_CITYPALL (0x0001)
#define WFS_CIM_CITYPUNFIT (0x0002)
#define WFS_CIM_CITYPINDIVIDUAL (0x0004)
#define WFS_CIM_CITYPLEVEL3 (0x0008)
#define WFS_CIM_CITYPLEVEL2 (0x0010)

/* values of WFSCIMCASHIN.usStatus */
/* values of WFSCIMPHCU.usPStatus */

#define WFS_CIM_STATCUOK (0)
#define WFS_CIM_STATCUFULL (1)
#define WFS_CIM_STATCUHIGH (2)
#define WFS_CIM_STATCULOW (3)
#define WFS_CIM_STATCUEMPTY (4)
#define WFS_CIM_STATCUINOP (5)
#define WFS_CIM_STATCUMISSING (6)
#define WFS_CIM_STATCUNOVAL (7)
#define WFS_CIM_STATCUNOREF (8)
#define WFS_CIM_STATCUMANIP (9)

/* values of WFSCIMSTATUS.fwPositions */
/* values of WFSCIMCAPS.fwPositions */
/* values of WFSCIMINPOS.fwPosition */

CWA 14050-15:2003 (E)

57

/* values of WFSCIMTELLERDETAILS.fwInputPosition */
/* values of WFSCIMCASHINSTART.fwInputPosition */

#define WFS_CIM_POSNULL (0x0000)
#define WFS_CIM_POSINLEFT (0x0001)
#define WFS_CIM_POSINRIGHT (0x0002)
#define WFS_CIM_POSINCENTER (0x0004)
#define WFS_CIM_POSINTOP (0x0008)
#define WFS_CIM_POSINBOTTOM (0x0010)
#define WFS_CIM_POSINFRONT (0x0020)
#define WFS_CIM_POSINREAR (0x0040)

/* values of WFSCIMSTATUS.fwPositions */
/* values of WFSCIMCAPS.fwPositions */
/* values of WFSCIMTELLERDETAILS.fwOutputPosition */
/* values of WFSCIMCASHINSTART.fwOutputPosition */
/* values of WFSCIMOUTPUT.fwPosition */

#define WFS_CIM_POSOUTLEFT (0x0080)
#define WFS_CIM_POSOUTRIGHT (0x0100)
#define WFS_CIM_POSOUTCENTER (0x0200)
#define WFS_CIM_POSOUTTOP (0x0400)
#define WFS_CIM_POSOUTBOTTOM (0x0800)
#define WFS_CIM_POSOUTFRONT (0x1000)
#define WFS_CIM_POSOUTREAR (0x2000)

/* values of WFSCIMCASHINSTATUS.wStatus */

#define WFS_CIM_CIOK (0)
#define WFS_CIM_CIROLLBACK (1)
#define WFS_CIM_CIACTIVE (2)
#define WFS_CIM_CIRETRACT (3)
#define WFS_CIM_CIUNKNOWN (4)

/* values of WFSCIMCAPS.fwRetractAreas */
/* values of WFSCIMRETRACT.usRetractArea */

#define WFS_CIM_RA_RETRACT (0x0001)
#define WFS_CIM_RA_TRANSPORT (0x0002)
#define WFS_CIM_RA_STACKER (0x0004)
#define WFS_CIM_RA_BILLCASSETTES (0x0008)
#define WFS_CIM_RA_NOTSUPP (0x0010)
/* values of WFSCIMP6INFO.usLevel */
/* values of WFSCIMP6SIGNATURE.usLevel */

#define WFS_CIM_LEVEL_2 (2)
#define WFS_CIM_LEVEL_3 (3)

/* values of WFSCIMTELLERUPDATE.usAction */

#define WFS_CIM_CREATE_TELLER (1)
#define WFS_CIM_MODIFY_TELLER (2)
#define WFS_CIM_DELETE_TELLER (3)

/* values of WFSCIMCUERROR.wFailure */

#define WFS_CIM_CASHUNITEMPTY (1)
#define WFS_CIM_CASHUNITERROR (2)
#define WFS_CIM_CASHUNITFULL (3)
#define WFS_CIM_CASHUNITLOCKED (4)
#define WFS_CIM_CASHUNITNOTCONF (5)
#define WFS_CIM_CASHUNITINVALID (6)
#define WFS_CIM_CASHUNITCONFIG (7)
#define WFS_CIM_FEEDMODULEPROBLEM (8)

/*values of WFSCIMP6SIGNATURE.dwOrientation*/

#define WFS_CIM_ORFRONTTOP (1)
#define WFS_CIM_ORFRONTBOTTOM (2)

CWA 14050-15:2003 (E)

58

#define WFS_CIM_ORBACKTOP (3)
#define WFS_CIM_ORBACKBOTTOM (4)
#define WFS_CIM_ORUNKNOWN (5)
#define WFS_CIM_ORNOTSUPPORTED (6)

/* values of lpusReason in WFS_EXEE_CIM_INPUTREFUSE */

#define WFS_CIM_CASHINUNITFULL (1)
#define WFS_CIM_INVALIDBILL (2)
#define WFS_CIM_NOBILLSTODEPOSIT (3)
#define WFS_CIM_DEPOSITFAILURE (4)
#define WFS_CIM_COMMINPCOMPFAILURE (5)
#define WFS_CIM_STACKERFULL (6)

/* values of lpusReason in WFS_EXEE_CIM_NOTESERROR */

#define WFS_CIM_DOUBLENOTEDETECTED (1)
#define WFS_CIM_LONGNOTEDETECTED (2)
#define WFS_CIM_SKEWEDNOTE (3)
#define WFS_CIM_INCORRECTCOUNT (4)
#define WFS_CIM_NOTESTOOCLOSE (5)

/* WOSA/XFS CIM Errors */

#define WFS_ERR_CIM_INVALIDCURRENCY (-(CIM_SERVICE_OFFSET + 0))
#define WFS_ERR_CIM_INVALIDTELLERID (-(CIM_SERVICE_OFFSET + 1))
#define WFS_ERR_CIM_CASHUNITERROR (-(CIM_SERVICE_OFFSET + 2))
#define WFS_ERR_CIM_TOOMANYITEMS (-(CIM_SERVICE_OFFSET + 7))
#define WFS_ERR_CIM_UNSUPPOSITION (-(CIM_SERVICE_OFFSET + 8))
#define WFS_ERR_CIM_SAFEDOOROPEN (-(CIM_SERVICE_OFFSET + 10))
#define WFS_ERR_CIM_SHUTTERNOTOPEN (-(CIM_SERVICE_OFFSET + 12))
#define WFS_ERR_CIM_SHUTTEROPEN (-(CIM_SERVICE_OFFSET + 13))
#define WFS_ERR_CIM_SHUTTERCLOSED (-(CIM_SERVICE_OFFSET + 14))
#define WFS_ERR_CIM_INVALIDCASHUNIT (-(CIM_SERVICE_OFFSET + 15))
#define WFS_ERR_CIM_NOITEMS (-(CIM_SERVICE_OFFSET + 16))
#define WFS_ERR_CIM_EXCHANGEACTIVE (-(CIM_SERVICE_OFFSET + 17))
#define WFS_ERR_CIM_NOEXCHANGEACTIVE (-(CIM_SERVICE_OFFSET + 18))
#define WFS_ERR_CIM_SHUTTERNOTCLOSED (-(CIM_SERVICE_OFFSET + 19))
#define WFS_ERR_CIM_ITEMSTAKEN (-(CIM_SERVICE_OFFSET + 23))
#define WFS_ERR_CIM_CASHINACTIVE (-(CIM_SERVICE_OFFSET + 25))
#define WFS_ERR_CIM_NOCASHINACTIVE (-(CIM_SERVICE_OFFSET + 26))
#define WFS_ERR_CIM_POSITION_NOT_EMPTY (-(CIM_SERVICE_OFFSET + 28))
#define WFS_ERR_CIM_INVALIDRETRACTPOSITION (-(CIM_SERVICE_OFFSET + 34))
#define WFS_ERR_CIM_NOTRETRACTAREA (-(CIM_SERVICE_OFFSET + 35))

/*===*/
/* CIM Info Command Structures */
/*===*/

typedef struct _wfs_cim_inpos
{
 WORD fwPosition;
 WORD fwShutter;
 WORD fwPositionStatus;
 WORD fwTransport;
 WORD fwTransportStatus;
} WFSCIMINPOS, * LPWFSCIMINPOS;

typedef struct _wfs_cim_status
{
 WORD fwDevice;
 WORD fwSafeDoor;
 WORD fwAcceptor;
 WORD fwIntermediateStacker;
 WORD fwStackerItems;
 WORD fwBanknoteReader;
 BOOL bDropBox;
 LPWFSCIMINPOS * lppPositions;
 LPSTR lpszExtra;
} WFSCIMSTATUS, * LPWFSCIMSTATUS;

typedef struct _wfs_cim_caps
{

CWA 14050-15:2003 (E)

59

 WORD wClass;
 WORD fwType;
 WORD wMaxCashInItems;
 BOOL bCompound;
 BOOL bShutter;
 BOOL bShutterControl;
 BOOL bSafeDoor;
 BOOL bCashBox;
 BOOL bRefill;
 WORD fwIntermediateStacker;
 BOOL bItemsTakenSensor;
 BOOL bItemsInsertedSensor;
 WORD fwPositions;
 WORD fwExchangeType;
 WORD fwRetractAreas;
 WORD fwRetractTransportActions;
 WORD fwRetractStackerActions;
 LPSTR lpszExtra;
} WFSCIMCAPS, * LPWFSCIMCAPS;

typedef struct _wfs_cim_physicalcu
{
 LPSTR lpPhysicalPositionName;
 CHAR cUnitID[5];
 ULONG ulCashInCount;
 ULONG ulCount;
 ULONG ulMaximum;
 USHORT usPStatus;
 BOOL bHardwareSensors;
 LPSTR lpszExtra;
} WFSCIMPHCU, * LPWFSCIMPHCU;

typedef struct _wfs_cim_note_number
{
 USHORT usNoteID;
 ULONG ulCount;
} WFSCIMNOTENUMBER, * LPWFSCIMNOTENUMBER;

typedef struct _wfs_cim_note_number_list
{
 USHORT usNumOfNoteNumbers;
 LPWFSCIMNOTENUMBER *lppNoteNumber;
} WFSCIMNOTENUMBERLIST, * LPWFSCIMNOTENUMBERLIST;

typedef struct _wfs_cim_cash_in
{
 USHORT usNumber;
 DWORD fwType;
 DWORD fwItemType;
 CHAR cUnitID[5];
 CHAR cCurrencyID[3];
 ULONG ulValues;
 ULONG ulCashInCount;
 ULONG ulCount;
 ULONG ulMaximum;
 USHORT usStatus;
 BOOL bAppLock;
 LPWFSCIMNOTENUMBERLIST lpNoteNumberList;
 USHORT usNumPhysicalCUs;
 LPWFSCIMPHCU * lppPhysical;
 LPSTR lpszExtra;
} WFSCIMCASHIN, * LPWFSCIMCASHIN;

typedef struct _wfs_cim_cash_info
{
 USHORT usCount;
 LPWFSCIMCASHIN *lppCashIn;
} WFSCIMCASHINFO, * LPWFSCIMCASHINFO;

typedef struct _wfs_cim_teller_info
{
 USHORT usTellerID;
 CHAR cCurrencyID[3];

CWA 14050-15:2003 (E)

60

} WFSCIMTELLERINFO, * LPWFSCIMTELLERINFO;

typedef struct _wfs_cim_teller_totals
{
 CHAR cCurrencyID[3];
 ULONG ulItemsReceived;
 ULONG ulItemsDispensed;
 ULONG ulCoinsReceived;
 ULONG ulCoinsDispensed;
 ULONG ulCashBoxReceived;
 ULONG ulCashBoxDispensed;
} WFSCIMTELLERTOTALS, * LPWFSCIMTELLERTOTALS;

typedef struct _wfs_cim_teller_details
{
 USHORT usTellerID;
 WORD fwInputPosition;
 WORD fwOutputPosition;
 LPWFSCIMTELLERTOTALS *lppTellerTotals;
} WFSCIMTELLERDETAILS, * LPWFSCIMTELLERDETAILS;

typedef struct _wfs_cim_currency_exp
{
 CHAR cCurrencyID[3];
 SHORT sExponent;
} WFSCIMCURRENCYEXP, * LPWFSCIMCURRENCYEXP;

typedef struct _wfs_cim_note_type
{
 USHORT usNoteID;
 CHAR cCurrencyID[3];
 ULONG ulValues;
 USHORT usRelease;
 BOOL bConfigured;
} WFSCIMNOTETYPE, * LPWFSCIMNOTETYPE;

typedef struct _wfs_cim_note_type_list
{
 USHORT usNumOfNoteTypes;
 LPWFSCIMNOTETYPE *lppNoteTypes;
} WFSCIMNOTETYPELIST, * LPWFSCIMNOTETYPELIST;

typedef struct _wfs_cim_cash_in_status
{
 WORD wStatus;
 USHORT usNumOfRefused;
 LPWFSCIMNOTENUMBERLIST lpNoteNumberList;
 LPSTR lpszExtra;
} WFSCIMCASHINSTATUS, * LPWFSCIMCASHINSTATUS;

typedef struct _wfs_cim_P6_info
{
 USHORT usLevel;
 LPWFSCIMNOTENUMBERLIST lpNoteNumberList;
 USHORT usNumOfSignatures;
} WFSCIMP6INFO, *LPWFSCIMP6INFO;

typedef struct _wfs_cim_get_P6_signature
{
 USHORT usLevel;
 USHORT usIndex;
} WFSCIMGETP6SIGNATURE, *LPWFSCIMGETP6SIGNATURE;

/*===*/
/* CIM Execute Command Structures */
/*===*/

CWA 14050-15:2003 (E)

61

typedef struct _wfs_cim_cash_in_start
{
 USHORT usTellerID;
 BOOL bUseRecycleUnits;
 WORD fwOutputPosition;
 WORD fwInputPosition;
} WFSCIMCASHINSTART, * LPWFSCIMCASHINSTART;

typedef struct _wfs_cim_retract
{
 WORD fwOutputPosition;
 USHORT usRetractArea;
 USHORT usIndex;
} WFSCIMRETRACT, * LPWFSCIMRETRACT;

typedef struct _wfs_cim_teller_update
{
 USHORT usAction;
 LPWFSCIMTELLERDETAILS lpTellerDetails;
} WFSCIMTELLERUPDATE, * LPWFSCIMTELLERUPDATE;

typedef struct _wfs_cim_output
{
 USHORT usLogicalNumber;
 WORD fwPosition;
 USHORT usNumber;
} WFSCIMOUTPUT, * LPWFSCIMOUTPUT;

typedef struct _wfs_cim_start_ex
{
 WORD fwExchangeType;
 USHORT usTellerID;
 USHORT usCount;
 LPUSHORT lpusCUNumList;
 LPWFSCIMOUTPUT lpOutput;
} WFSCIMSTARTEX, * LPWFSCIMSTARTEX;

typedef struct _wfs_cim_itemposition
{
 USHORT usNumber;
 LPWFSCIMRETRACT lpRetractArea;
 WORD fwOutputPosition;
} WFSCIMITEMPOSITION, * LPWFSCIMITEMPOSITION;

typedef struct _wfs_cim_cash_in_type
{
 USHORT usNumber;
 DWORD dwType;
 LPUSHORT lpusNoteIDs;
} WFSCIMCASHINTYPE, * LPWFSCIMCASHINTYPE;

typedef struct _wfs_cim_P6_signature
{
 USHORT usNoteId;
 ULONG ulLength;
 DWORD dwOrientation;
 LPVOID lpSignature;
} WFSCIMP6SIGNATURE, *LPWFSCIMP6SIGNATURE;

/*===*/
/* CIM Message Structures */
/*===*/

typedef struct _wfs_cim_cu_error
{
 WORD wFailure;
 LPWFSCIMCASHIN lpCashUnit;
} WFSCIMCUERROR, * LPWFSCIMCUERROR;

CWA 14050-15:2003 (E)

62

typedef struct _wfs_cim_counts_changed
{
 USHORT usCount;
 USHORT *lpusCUNumList;
} WFSCIMCOUNTSCHANGED, * LPWFSCIMCOUNTSCHANGED;

/* restore alignment */
#pragma pack (pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSCIM__H */

